

Utilizing Millimeter Waves to Non-Invasively Measure Cranial Temperature in Traumatic Brain Injury (TBI)

Jazmean Williams¹, Elizabeth Higgins¹, Hassaan Sheikh¹, Shadman Sakib¹, Don Herzog², Michael Neidrauer¹, Paul Shore^{3,4}

¹ School of Biomedical Engineering, Science and Health Systems ² Dominion Aesthetics Technology ³ College of Medicine ⁴ St. Christopher's Hospital

Motivation

- TBIs are injuries that disrupt the normal function of the brain^[1]
- 2.5 million documented ED visits due to TBI in the US in 2010^[1]
- Lifetime economic cost of TBI: approximately \$76.5 billion^[1]
- TBIs result in cellular/deep tissue injury, a marker of which is a brain fever^{[1],[2]}
- Detecting brain fevers is not part of the diagnostic process for hospitals
- Current tools to measure brain fevers are not accurate and are invasive
- There is a need for a non-invasive tool that can be used to measure brain fevers

Limitations of Current Solutions

	CONSTRAINTS			
	Tissue Damage	Invasiveness	Integration Time	Accuracy
Infrared	5	5	3	4
Forehead Sensor	-5	5	3	2
Millimeter Wave Sensor	-5	5	4	5
Implantable Probbe	554	1	4	5

Constraints

C.P1. Time: 9 months **C.P2**. Budget: \$3500

C.P3. Resources: Lab/Materials

C.D1. First year of the project

C.D2. Minimal previous research

C.D3. Limited availability of models

C.D4. Attenuation/scattering of signal due to the phantom model

Requirements

R.1 Fundamental Operating Frequency80 GHz

R.2 Temperature Resolution - 2°C

R.3 Signal Integration Time - 30 Seconds

R.4 Temperature Presented on Computer Display

R.5 Under 16 cm³ for Final Volume

Planck's Blackbody Radiation Law

- Absorbs all incoming radiation at all frequencies equally^[3]
- Re-admits radiation with perfect efficiency^[3]
- Maintains Thermal Equilibrium^[3]

$B_f^P = \frac{2hf^3}{c^2} (e^{hf/kT} - 1)^{-1}$

 B_f^P - Spectral Brightness [W·m⁻²·sr⁻¹·Hz⁻¹]

h - Planck's Constant [J·s]

f – Frequency [Hz]

k – Boltzmann's Constant [J·K-1]

T – Absolute Temperature [K]

c - Speed of Light [m·s-1]

Objective

Engineering a millimeter wave sensor to determine temperature of a phantom model non-invasively

Design Approach

Solution

Millimeter Wave Sensor

- Features
 4 Antennas capable of sensing radiation in 76-81
 GHz region
- Data transfer capabilities from chip to computer for signal processing to be done

Phantom

- Material: Silicone Elastomer
- **Dimensions:** $15.2 cm^3$ cube
- Will be heated: Thin-walled polycarbonate tubing will circulate

 bested water through
- heated water through
- Thermocouples: serve as verification of how sensing depth

Verification

Radar Verification Testing

	Object - Distance	dBFS Output
	No Objects	-85.13
m	Reflector - 0.3 Meter	-45.1
	Reflector - 2 Meter	-97.47

Conclusion

- A Millimeter Wave device has been created to non-invasively detect temperature
- Verification tests prove that the device can differentiate between different temperatures
- Future work includes testing the temperature of the phantom and optimizing the software to give real-time temperature output

Impact

Quantitative Measurement of injury severity

Improve standard of care

Less undiagnosed injuries

Acknowledgements

Don Herzog, Dr. Michael Neirdauer, DrExcel Health, Dr. Paul Shore, and Drexel Biomedical Engineering Senior Design Faculty

References

[1] CDC, Report to Congress, 2015. [2] R. H. Sacco, Dissertation, 2009. [3] M.D. Grady, Dissertation, 2017.