# Talonay Tether Screw

Team 15: Joseph Ardin<sup>1</sup>, Heidi Dailey<sup>1</sup>, Christopher Dionne<sup>1</sup>, Bryce Furek<sup>1</sup>, Jessica Niebuhr<sup>1</sup>, Siram Balasubramanian, PhD<sup>1</sup>, Alexander Becsey<sup>2</sup>, Emma Boyajieff<sup>2</sup>, Ryan Cha<sup>2</sup>, Mei-Le Keck<sup>2</sup>, William Sutton<sup>2</sup>, Julian Takagi-Stewart<sup>2</sup>, Thomas Sherman, MD<sup>3</sup> School of Biomedical

<sup>1</sup> School of Biomedical Engineering, Science and Health Systems <sup>2</sup> College of Medicine <sup>3</sup> Orthopedic Associates of Lancaster

#### **Background**

→1 in 6 adults over 50 years old have 🏠 🏠 🏠 🏗 foot osteoarthritis

→7 million experience talonavicular joint arthritis (> 50 years of age)

Engineering, Science and Health Systems

- →11,000 talonavicular arthrodesis annually
- →20% failure in talonavicular joint fusions

# **Existing Solutions & Limitations**

## Existing Solution

Staple



I imitation

Does not achieve as much compression as some of the other solutions

Tapered screws can become removed from bone

Variable angle compression screw

Post & Screw



invasive surgery

# **Constraints**

1. Time: 34 weeks

Clip and plate

- 2. Resources: Bone Blocks and Biomechanics Lab
- 3. Budget: \$800
- 4. Policies: IRB and IACUC approval. Drexel environmental health and safety plan. Drexel clinical safety plan
- 5. Size: Limited by anatomy around region
- 6. Biocompatible Material: To not be
- rejected by body
- 7. Thread Size: Outlined by ASME B1.1 8. Bit Type: Outlined by ASTM F116-12

Inconsistencies in bone purchase

between anchors

Device is bulkier and requires a more

## Requirements

- 1. Displacement: 0-30° variation, uniform compression
- 2. Insertion Torque: 50% or less of the torsional strength
- 3. Torsional Yield Strength: > 8 Nm
- 4. Tensile Strength: Experimentally determined using Bose ElectroForce
- 5. Resistance to Fatique: > 411K cv cles/ steps

# Objective

Design a device to successfully secure the talonavicular joint and improve patient outcomes

#### Solution

Our innovative solution uses device designs from successful rotator cuff repairs and will allow stability for patients





(A) Three screws are inserted into one bone and compression is applied using a suture → no backing out (B) Sutures are screwed into place using screw caps → reduced surface prominence, patient comf ort, less/smaller incision sites

# **Design & Build**



- 1. Anchor Screw
  - Optimized threads for bone purchase
- 2. Capture Channel
  - Passage for thread
- 3. Set Screw
  - Secure tether to screw

# Societal Impact



Satisfaction







Satisfaction

Expand to Procedures

Reoperations Prevented 330

Patient Costs Saved \$13,800,000

#### **Future Plans**

2023-2024

2025

2026 2027

- Prototype
- Surgical Technique
- Verification and Validation
- 510k Submission
- Market Release
- Acquisition First Production Lot

#### **Acknowledgments**

Thank you to the following individuals & groups for their contributions to this project:

Dr. Balasubramanian, Project Advisor Dr. Sherman, Clinical Advisor

Drexel School of Biomed., Project Grant DrExcel Health, Project Grant