Pediatric Nasotracheal Intubation Assist Device

¹Michael Moradi, ¹Jaret Nishikawa, ¹Kishan Patel ²Casey Fuoco, ²Sophia Macchia, ²Hannah Mikkelsen, ²Dominic Razo-Castañeda, ²Sarthak Sharma Advisors: Marek Swoboda, PhD, Aysha Hasan, MD

Biomedical Engineering, Science and Health Systems

¹Drexel University College of Medicine, Philadelphia, PA, ²School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA

NEED

- Delays in airway management increase mortality rate from 1.8% to 11.8% in hospital and emergency settings[1]
- 57% of complications in pediatric oral intubation cases involve pre-existing airway or craniofacial abnormalities requiring a different method – nasal intubation[2]
- Differences in pediatric anatomy predisposes patients to airway obstruction and results in a sharper angle through which the fiberoptic scope must pass to reach the larynx and vocal cords

EXISTING SOLUTION

Nasal Trumpet (Nasopharyngeal Airway)

- Pros: opens obstructed airway, guides fiberscope (off label use)
- Cons: prevents insertion of endotracheal tube, increases time required to establish airway, requires manual cut

PROTOTYPE

Prototype 1: 3D printed in Thermoplastic Polyurethane on Fused Deposition Modeling printer **Results**: Prototype material

was too stiff/brittle

Prototype 2: 3D printed Flexible Material on Stereolithography printer

OBJECTIVE

Create an easily removable assistive device for pediatric nasal fiberoptic intubation especially in challenging, difficult airways

SOLUTION

Engineering Drawing

Same dimensions as existing (20 French) trumpet with added perforations

1. Nasal trumpet is inserted

3.Pre-manufactured perforations ensure the trumpet is easily removed from patient and allows for the ET to be placed

the correct location

4. Fiberscope is inplace and ready to use

CONSTRAINTS

Project	Design	
 Time – 9 months Budget – \$800 Resources – St. Christopher's Hospital Standards – ISO 10993, ASTM D624, ASTM D3767-03 	 Differences in patient anatomy Patient safety Disruption of normal procedure 	

REQUIREMENTS

Outer Diameter	Inner Diameter	Length	Tear Strength	Flexibility
6.7 ± 0.2 mm	5 ± 0.2 mm	105 ± 0.2 mm	<14.3 N	(4.5 x 10 ⁻⁴ Nm ²)
✓	✓	✓	= 13.5 N	(2.9 x 10 ⁻⁴ Nm ²) p = 0.013

IMPACT

• Will benefit physicians, anesthesiologists, and patients by improving nasal intubation reducing the risk of critical via fiberoptic guidance in emergencies

CONCLUSION

• Will assist in difficult pediatric nasotracheal intubation by delays in airway management in cases where the mouth is inaccessible

REFERENCES

- [1] B. Morshedi, "Management of the trauma patient's airway pearls and pitfalls," (2015)
- [2] Bai W, et al.; "Evaluation of emergency pediatric tracheal intubation by pediatric anesthesiologists on inpatient units and the Emergency Department," (2016)
- [3] ASTM International. "ASTM D3767-03 Standard Practice for Rubber—Measurement of Dimensions," 2010.
- [4] ASTM International. "ASTM D624-00(2020) Standard Test Method for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomers