

Measuring Changes in Passive Muscle Stiffness Following Activity

Joanna Canagarajah¹, Dennis Chin¹, Shilpa Donde¹, Aishwary Desai², Andrew Friedman², Kaitlyn Thomesen², Wan Y. Shih¹, Wei-Heng Shih³, Joseph Sarver ¹

¹School of Biomedical Engineering, Science and Health Systems ²Drexel University College of Medicine ³ College of Engineering

Wants

- Ensure safe physical activity by determining:
- Readiness for competition/intense activity
- Necessity of further therapy
- Immediate results
- Device used for multiple muscle groups
- Optimize player performance
- Feel able-bodied for competitive sports
- Reduce mental anxiety

Need

- Passive muscle stiffness loss or reduction in joint's range of motion (ROM) during physical activity
- Use Elastic Modulus rather than stiffness to analyze passive muscle stiffness
- Can distinguish between healthy vs. not healthy tissue
- Measuring the target muscle → more accurate evaluation
- Stiff muscle = decrease in ROM = decrease in athletic performance^[1]

High vs Low Elastic Modulus Muscle Tissue

Customer Fears

- Fear of injury
- Exacerbation of injury
- Fear of doing permanent damage
- Returning from injury too soon
- Fear that accurate range of motion analysis cannot be gauged for multi-sport athletes
- Test could involve cumbersome equipment, be inconvenient, slow, and costly

Product Features

- Based on the reversible Piezoelectric effect^[2]:
- Mechanical deformation → charge accumulation OR charge accumulation → mechanical deformation
- Measures Elastic Modulus by measuring changes in induced voltage with and without tissue^[8]
- Utilize PEF with 6mm widths to measure Elastic Modulus and detect changes in passive muscle stiffness

Solution Model

 Quantitatively analyze passive muscle stiffness using Elastic Modulus

Product Benefits

- Measuring target muscle → more accurate evaluation
- Allow athletic trainers and physical therapists to assess patients
 - Help players perform more optimally
- Determine specific therapy for rehabilitation
- Prevent the overuse of muscles
- Lead poisoning will be prevented by housing
- Repeatable use of device can lead to minimal pollution
- User-friendly

Product Experience

- Near-immediate machine results
- Pain-free evaluation of muscle stiffness
- Can utilize on oneself if conducted properly
- Small learning curve
- Commercial product will have a user-friendly design
- Easily interpretable results
- High satisfaction with accuracy of the results

References: [1]"Measuring Range of Motion," us.humankinetics.com. [2] Johnson Electric,The Piezoelectric Effect. Nanomotion. [3] "Elastography" Mayo Clinic. [4] "Technology." Myoton, www.myoton.com/technology/. [5] Shankar, Nachiket, et al., 2014. [6] W. Shih, 2013.

Acknowledgements

Special thanks to Eric John, Pawan Rao, Lexi Jednorski, Pablo Huang, and DrExcel Health Initiative

$E = \frac{1}{2} \left(\frac{\pi}{A}\right)^{\frac{1}{2}} (1 - \vartheta^2) \frac{K\left(V_{in,0} - V_{in}\right)}{V_{in}}$ tissue Electric current applied to driving PZT layer $(36mm^2);$ r deflects downwards (0.5);

Voltage induced in sensing PZT layer

• E = elastic modulus of A = surface area of probe tip • ν = Poisson's ratio of tissue K = spring constant of PEF (143 N/m); deflects downwards • $V_{in.0}$ = voltage induced without

tissue^[6]

V_{in} = voltage induced with