

SacraFlow Probe: A Revolutionary way to treat Deep Tissue Injury 🚺

Sabrina Frattarelli¹, Meet Patel¹, Gavin Welsh¹, Melissa Vuong¹, Randolph Sinahon¹, Rajit Agarwal², Julia Danon², Abigail McKenna², Allbert Tong², Liying Wei² Faculty Advisors: Kurtulus Izzetoglu, PhD¹, Michael Weingarton MD, MBA, FACS²

¹ School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia PA ² Drexel University College of Medicine, Philadelphia PA

Need

3 million adults develop tissue pressure injuries each year. Incidence rates of 38% in hospitals, 23.9% in nursing homes.

2008 CMS Never Event prohibits medical reimbursement for hospital acquired conditions, including pressure injuries

Hospital acquired pressure injury treatment can cost the health industry up to **26.8 billion dollars.** 59% of these costs arise from DTI's that have reached stage ³/₄

No current clinically accepted technology to detect PI prior to irreversible injury

Objective

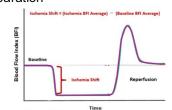
Using **Diffuse Correlation Spectroscopy** to measure blood flow to **detect and diagnose DTI upon admission before it reaches an advanced state.** A probe will be placed on a patient's sacral region to detect any signs of ischemia.

Market Analysis

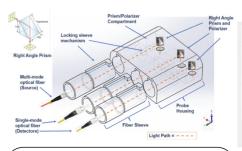
Population

Annual cases of pressure injury	3M ~30%	
% Advancing to late stage		
Total	~900.000	

Potential savings estimate


Design Inputs

Constraints


- Biocompatibility
- Max Laser Power: 5mW/mm²

Requirements

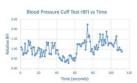
- 1. Assembly tolerance ± 0.15mm
- 2a. 8-20 mm Source-Detector Separation
- 2b. ≥ 60% decrease in BFI
- 3. Tensile strength ≥ 13.3N
- 4. Application at sacrum

Prototype

- Probe compatible with DCS system to measure sacral blood flow
- Attach to sacral region using Tegaderm
- Flexible material

Verification/Validation

Outcome


TBD

TBD

Test

1. Assembly Fit

2. Function/Flow

3. Lock Strength

4. Sacrum Function TBD

Existing Solutions/Limitations

Device	Sacraflow Probe	MRI (GE, Siemens)	Scanning Laser Doppler (Moor Instruments)	Ultrasound (GE, Siemens)	Thermal Imaging (FLIR Systems)
Capabilities	Detects early ischemia before skin breakdown; ideal for ICUs, ERs, surgical teams where perfusion monitoring is <u>critical</u>	Measures blood oxygenation and perfusion, expensive, time consuming	Monitors microcirculation, low depth penetration	Measure blood flow velocity, highly operator dependent	Monitors temperature changes as proxy for tissue perfusion, rapid results, low depth penetration
Quantifies blood flow	②	Ø	②	×	×
Portable System	Ø	×	②	②	•
Depth of measurement	4-10 mm	Several cm	1-2 mm	1-2 cm	Surface-based (~0.5mm)

Conclusion and Impact

- Enhances patient care through early DTI detection, reducing complications and accelerating recovery
- •Lowers hospital costs by preventing late-stage injuries and reducing readmissions
- Portable, non-invasive, and easy-to-use—fits seamlessly into existing clinical workflows

Acknowledgements:

Dr. Michael Weingarten, Kurtulus Izzetoglu, DrExcel Health, Drexel School of Biomedical Engineering

Padula WV, Delarmente BA. The national cost of hospital-acquired pressure injuries in the United States. Int Wound J. 2019 Jun;16(3):634-640. doi: 10.1111/iwj.13071. Epub 2019 Jan 28. PMID: 30693644; PMCID: PMC7948545.