

**Biomedical Sciences** and Professional Studies



Brandon Alleborn<sup>\*1</sup>, Luke Berish<sup>\*1</sup>, Ben Dellmeyer<sup>\*1</sup>, Gavin Kane <sup>\*1</sup>, Christine Deng, BS<sup>2</sup>; Jake Fanizza, BS<sup>2</sup>; Talmadge Gaither, BE, MS<sup>2</sup>; Lorenzo Guani, BS, MPH<sup>2</sup>; Jaclyn Lo, BA<sup>2</sup>, Pramath Nath, MD<sup>2,3</sup>; Adrian Shieh, PhD<sup>1</sup> I School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia PA. 2 College of Medicine, Drexel University, Philadelphia PA. 3 Department of Emergency Medicine, St. Christopher's Hospital for Children, Philadelphia PA. \*Co-First Authors

### Need

#### **User and Problem**

College of Medicine

- Annually ~12,000 pediatric lower limb fractures<sup>1</sup> Underdeveloped motor coordination in children under seven makes them unable to use crutches<sup>2,3,4</sup>
- Additional burden on guardians

#### **Current Limitations**

- Physical Barriers, (i.e., stairs)
- Thigh walker stability and weight

# Objective

Redesign the first-generation Thigh Walker to better meet the needs of medical teams as well as increase mobility and independence for children



#### **Acknowledgements:** Special thanks to DUCOM, Drexel's COE, DrExcel, our advisors:

Technical and Engineering Faculty Mentor: Dr. Adrian Shieh, PhD; Teaching Professor

Clinical and Medical Faculty Mentor: Dr. Pramath Nath, MD; Pediatric Emergency Medicine Physician

#### **References:**

NEISS Query: National Estimate of Injuries Treated in Emergency Departments by AGE, BDPT. A kinematic comparison of gait with a backpack versus a trolley for load carriage in childrei

28–34. https://doi.org/10.1016/j.apergo.2019.05.00 3. Rahman, R., Shannon, B. A., & Ficke, J. R. (2020). Knee scooter-related injuries: a survey of foot and ankle orthopedic surgeons. Foot & Ankle

Ambrosino, S., van Dijk, S., Oranje, B., & Durston, S. (2014). Typical development of basal ganglia, hippocampus mvadala and cerebellum from age 7 to 24. NeuroImage, 96, 67–72. https://doi.org/10.1016/j.neuroimage.2014.03.072

# Mobility Device for Pediatric Patients with Lower Limb Injuries (2<sup>nd</sup> Generation)

## **Design Inputs**

#### Constraints Cost Weight < \$200 Prototype < 2 kg (4.4 lbs)\$80 Production Requirements \$750 Budget Adjustability Strength & Force

100.1 cm < H < 130.7 cm 5-7 5-95<sup>th</sup> percentile 5-7-year-olds

### Prototype

31 kg ≈ 1kN force

5-95<sup>th</sup> percentile 7-year-old

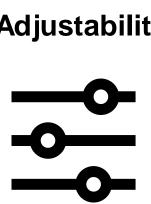

#### Adjustable BOA Fit Thigh

#### Calf Support on Aluminum Frame

- Limits leg swing
- Increase comfort
- Strap to secure leg

#### **Rotational Cane Tip**

- Mimics human ankle through flexion
- Reduces bending (0.5 lbs)




















# Time 37 Weeks **Stability** Rotation < 10° Longitudinal <15 mm Adjustable Knee Angle 15°-50°set by doctor Stainless steel **Telescope Tubing** Easy height Adjustability Total Weight: 2.2 kg (4.85 lbs)

# **Verification/Validation**

#### Engineering verification testing includes:

- fabrics)

#### Vertical Load Test

- Evaluate through hanging weight directly downwards from the PVC portion of the device.
- Fails when Plastic Deformation is detected

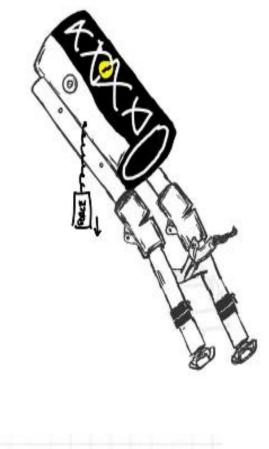
#### Longitudinal & Rotational Slippage

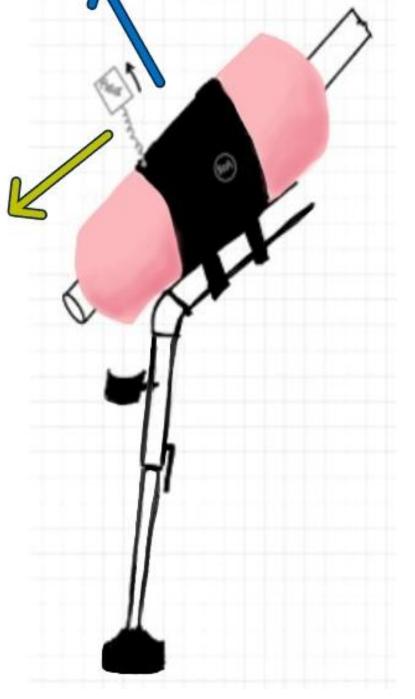
- Evaluate and minimize slippage to enhance patient safety, optimize functional use, and ensure user comfort
- Longitudinal test (yellow) ends at a pull strength of 691N or 15mm of brace displacement at 15 degrees of knee flection
- Rotational test (blue) ends at a rotation greater than **10** degrees relative to ankle

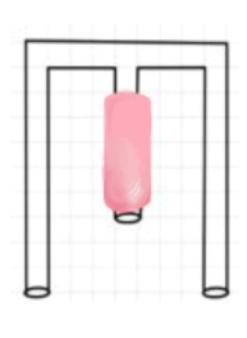
#### Market Research Analysis

- 30 healthcare professionals responded
- 53% reported  $\geq$  8/10 increase ADLs
- 37% reported  $\geq 8/10$  in comfort
- 90% willing to pay < \$400

# **Conclusion and Impact**


Overall, the product integrated the clinical and developmental considerations of a mobility device specifically for pediatric patients with lower limb injuries.


2<sup>nd</sup> generation model improves comfort, adjustability, and mobility. Future directions include incorporating market analysis feedback, mobility testing, and refinements to deliver a safer, patient-centered assistive walking device.


College of **Medicine** 

Vertical load testing for maximal weight-bearing capacity (signs of structural deformation or stress under vertical force) Longitudinal and rotational slippage tests for thigh stability Sleeve displacement for slippage (under various clothing)

100% reported  $\geq$  8/10 safety is highest priority









