

Graduate School of **Biomedical Sciences** and Professional Studies College of Medicine

Andrew Maza¹, Samir Jambhekar 1, Samantha Nishimura¹, Karl Kamanousa¹, Willow Pastard¹, Shane Tripp¹, Morgan Jerin², Dak Ragupathi², Anusha Kureekattil², Manisha Mathew², Anh-Thu Vu¹, Jaimie Dougherty², Joseph Sarver² ¹Drexel University College of Medicine, Philadelphia, PA, ²School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA

Background

- **Parkinson's Disease** is a neurodegenerative disease that results from a decrease in dopamine production. It affects cognitive and motor function.
- **Patient Population:** Affects ~1 million people in the US [3] and the average age of diagnosis is 66 years [1]
- **Problem:** PD often leads to instability in the posterior direction (retropulsion) leading to falls which can be a cause of extended hospitalizations and high costs
- In a 6-month period, 25% of PD patients experience retropulsion [2]

Consequences:

- Physical patient cannot maintain proper posture, gait disturbances are hard to recover from, difficulty performing everyday activities
- Psychosocial patients often struggle with not having a sense of independence, frequent falls can create a fear of walking
 - Financial The cost of treatment after a fall is significant (the total cost of PD for individuals, families, and the U.S. government is \$51.9 Billion each year) [4,5]

Advantages Versus Existing Solution		
Device	Effectiveness	Ease of use
Upright Rollator	-Affordable -Provides a stabilizing effect to prevent retropulsion	-Not easily a -Not easily p
Weighted Vests	-Portable -Provides a stabilizing effect to prevent retropulsion -Improves gait speed	-Not easily a affordable -Requires pa maintain con with physica adjust weigh -Balance-Ba Weighting e determine the placement
U-Shaped Wheeled Walkers	 -Provides a stabilizing effect to prevent side and forward falls, but does not prevent retropulsion -Helpful for Parkinson's patients with difficulty turning -Brakes in the hands can stop device when needed 	-Not easily a -Not afforda -Not easily -Less effect surfaces
Standard Walker	-Accessible -Affordable -Portable	-Does not here retropulsion
Our Solution	 -Handlebar component maintains stability of system and maintains normal pelvic tilt -Lockable swivel; pneumatic wheels maintains safe gait speed and pacing -Thrust bearing promote smooth gait 	-Easy to set -Portable Easy to use

Assistive Walking Device for Parkinson's Patients **Experiencing Retropulsion**

Device Specifications

ons

accessible portable

accessible or

patient to nsistent visits al therapists to ghts Based-Torsoexam needed to the weight

accessible able portable tive on uneven

help prevent

et up

Solution: handlebar and wheel accessories that complement a standard walker to reduce the risk of retropulsion

Device Requirements

Device maintains patient's normal posterior pelvic tilt (6-8°) Wheels maintain a speed of 0.70-1.30 m/s to promote smooth gait patterns

User-Friendly Requirements

Time to set up device is less than 5 minutes Device is stable and easy to use; it should not tip over with less than 150 lbs of force applied to forearm supports at 45-90°

PVC/PLA handlebar: maintains stability and normal pelvic tilt

Lockable swivel pneumatic wheels: provide rotational resistance to maintain optimal gait velocity

[1] S. L. Wong, H. Gilmour, and P. L. Ramage-Morin, "Parkinson's disease: Prevalence, diagnosis and impact," Researchgate.net/profile/Heather-Gilmour-2/publication/268512906_Parkinson%27s_Disease_Prevalence_diagnosis_and_impact [Accessed: 01-Oct-2021]. [2] B. Lindholm, P. Hagell, O. Hansson, and M. H. Nilsson, "Prediction of falls and/or near falls in people with mild Parkinson's disease," PloS one, 30-Jan-2015. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4311993/. [Accessed: 01-Oct-2021]. [3] "Understanding Parkinson's - Statistics," Parkinson's Foundation. [Online]. Available: https://www.parkinson's Disease Economic Burden on Patients, Families and the Federal Government Is \$52 Billion, Doubling Previous Estimates. (2019, June 13). The Michael J. Fox Foundation for Parkinson's Research | Parkinson's Disease. [5] Yang, W., Hamilton, J.L., Kopil, C. et al. Current and projected future economic burden of Parkinson's disease in the U.S.. npj Parkinson's Disease. [5] Yang, W., Hamilton, J.L., Kopil, C. et al. Current and projected future economic burden of Parkinson's disease in the U.S.. npj Parkinson's Disease. [5] Yang, W., Hamilton, J.L., Kopil, C. et al. Current and projected future economic burden of Parkinson's disease in the U.S. npj Parkinson's Disease. [5] Yang, W., Hamilton, J.L., Kopil, C. et al. Current and projected future economic burden of Parkinson's disease in the U.S. npj Parkinson's Disease. [5] Yang, W., Hamilton, J.L., Kopil, C. et al. Current and projected future economic burden of Parkinson's disease in the U.S. npj Parkinson's Disease. [5] Yang, W., Hamilton, J.L., Kopil, C. et al. Current and projected future economic burden of Parkinson's disease in the U.S. npj Parkinson's Disease. [5] Yang, W., Hamilton, J.L., Kopil, C. et al. Current and projected future economic burden of Parkinson's disease in the U.S. npj Parkinson's Disease. [5] Yang, W., Hamilton, J.L., Kopil, C. et al. Current and projected future economic burden of Parkinson's disease in the U.S. npj Parkinson's Disease. [5] Yang, W., Hamilton, J.L., Kopil, C. et al. Current and projected future economic burden of Parkinson's Disease. [5] Yang, W., Hamilton, J.L., Kopil, C. et al. Current and projected future economic burden of Parkinson's Disease. [5] Yang, W., Hamilton, J.L., Kopil, C. et al. Current and projected future economic burden of Parkinson's Disease. [5] Yang, W., Hamilton, J.L., Kopil, C. et al. Current and projected future economic burden of Parkinson's Disease. [5] Yang, W., Hamilton, J.L., Kopil, C. et al. Current and Parkinson's Disease. [5] Yang, W., Hamilton, J.L., Kopil, C. et al. Current and Parkinson's Disease. [5] Yang, W., Hamilton, J.L., Kopil, C. et al. Current and Parkinson's Disease. [5] Yang, W., Hami 0117-1 [6] Verboket RD, Mühlenfeld N, Woschek M, et al. Stationäre Versorgungskosten, kostenverursachende Faktoren und potential reimbursement problems due to fall-related fractures in patients with Parkinson's disease]. Chirurg. 2020;91(5):421-427. doi:10.1007/s00104-019-01074-w [7] François C, Biaggioni I, Shibao C, et al. Fall-related healthcare use and costs in neurogenic orthostatic hypotension with Parkinson's disease [published correction appears in J Med Econ. 2017 Nov;20(11):1216]. J Med Econ. 2017;20(5):525-532. doi:10.1080/13696998.2017.1284668 [8] Bloem BR, Grimbergen YA, Cramer M, Willemsen M, Zwinderman AH. Prospective assessment of falls in Parkinson's disease. J Neurol. 2001;248(11):950-958. doi:10.1007/s004150170047 [9] Rudzińska M, Bukowczan S, Stożek J, et al. The incidence and risk factors of falls in Parkinson disease: prospective study. Neurol Neurochir Pol. 2013;47(5):431-437. doi:10.5114/ninp.2013.38223 [10] Parkinson's disease. OTvest. (2019, December 14). Retrieved December 5, 2021, from https://otvest.com/parkinsons-disease/. [11] U-step neuro (standard). UStep. (2021, October 11). Retrieved December 5, 2021, from https://www.ustep.com/product/standard-model/?attribute_size=Standard%2B%285%E2%80%992%E2%80%9D-6%E2%80%991%E2%80%9D%2Btall%29&attribute_cueing-module=Without%2BCueing%2BModule&gclid=Cj0KCQiA47GNBhDrARIsAKfZ2rDq-b5jFoH0qr5rc3AV-Mjga1EEj6oQe35r7H09GeTF2SsGiOYdqb0aApH-EALw_wcB

Thrust bearings: promote smooth gait and limit disturbances

per patient [7] outpatient services PD patient falls: period [2]

Verification Testing and Conclusions

pipe reinforcement patients [2] other devices

References

College of Medicine

Market Validation

- Average fall-related healthcare costs >\$15,000
- Increased healthcare resource allocation: more fall-related ED visits, hospitalizations, and

 - 25% (~250,000 patients) in a 6-month
 - >50% (~500,000 patients) in a 12month period [8-9]
- Estimated \$3.75M-\$7.5M per year in fallrelated healthcare costs for PD patients in US
- Gait velocity and pelvic tilt tested four trials with variable wheel and handlebar components Handlebar revision - acetal plastic changed to PVC pipe to increase strength; added PVC
- Wheel revision magnetic discs changed to pneumatic system - strength of magnetic field could have adverse effects (patients with pacemakers, implants, etc.)
- Retropulsion poses a serious fall risk to PD
- These modifications limit gait disturbances and provide a smooth ride for PD patients, while also being cheaper and more accessible than
- This solution tackles retropulsion specifically while addressing specific concerns such as posture, smooth gate patterns, and stability