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Complex Systems Approaches to Diet:

A Systematic Review
Brent A. Langellier, PhD, MA,1 Usama Bilal, MD, MPH, PhD,2,3 Felipe Montes, PhD,4

Jose D. Meisel, PhD,5 Letícia de Oliveira Cardoso, PhD,6 Ross A. Hammond, PhD7,8,9
Context: Complex systems approaches can help to elucidate mechanisms that shape population-
level patterns in diet and inform policy approaches. This study reports results of a structured review
of key design elements and methods used by existing complex systems models of diet.

Evidence acquisition: The authors conducted systematic searches of the PubMed, Web of Sci-
ence, and LILACS databases between May and September 2018 to identify peer-reviewed manu-
scripts that used agent-based models or system dynamics models to explore diet. Searches occurred
between November 2017 and May 2018. The authors extracted relevant data regarding each study’s
diet and nutrition outcomes; use of data for parameterization, calibration, and validation; results;
and generated insights. The literature search adhered to PRISMA guidelines.

Evidence synthesis: Twenty-two agent-based model studies and five system dynamics model
studies met the inclusion criteria. Mechanistic studies explored neighborhood- (e.g., residential seg-
regation), interpersonal- (e.g., social influence) and individual-level (e.g., heuristics that guide food
purchasing decisions) mechanisms that influence diet. Policy-oriented studies examined policies
related to food pricing, the food environment, advertising, nutrition labels, and social norms. Most
studies used empirical data to inform values of key parameters; studies varied in their approaches
to calibration and validation.

Conclusions: Opportunities remain to advance the state of the science of complex systems
approaches to diet and nutrition. These include using models to better understand mechanisms
driving population-level diet, increasing use of models for policy decision support, and leveraging
the wide availability of epidemiologic and policy evaluation data to improve model validation.
Am J Prev Med 2019;57(2):273−281. © 2019 American Journal of Preventive Medicine. Published by Elsevier
Inc. All rights reserved.
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Complex systems methods like agent-based mod-
els (ABMs) and system dynamics models
(SDMs) are well suited for examining patterns

in diet and nutrition and can help identify effective pol-
icy approaches to improve diet at the population level.
Identifying and intervening upon the mechanisms that
shape population-level diet will likely require consider-
ing how multiple multilevel influences interact to com-
prise a complex and dynamic system.1 These multilevel
influences include factors at the community (e.g., social
norms), environment (e.g., food access), household (e.g.,
income), and individual (e.g., preferences) levels. Com-
plex systems can include feedback loops (e.g., access to
s Am J Prev Med 2019;57(2):273−281 273
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healthy food impacts individuals’ diets, but the collective
food purchasing patterns also influence food retail), het-
erogeneity (e.g., individuals differ in important ways that
affect their diet choices), nonlinear effects (e.g., tipping),
and dependencies (e.g., peer influence on diet).Complex
systems methods are useful precisely because they are
intended for examining elements of complexity that are
important for diet and for which other simulation-based
approaches (e.g., Markov models or microsimulation)
are not intended.2 An ABM is a flexible simulation
framework in which “agents” make decisions and pursue
goals according to simple decision rules.3 An ABM can
include one or multiple types (e.g., individuals and food
stores) of agents, each agent can have heterogeneous
characteristics (e.g., income levels), and agents can inter-
act with each other and their environments. For exam-
ple, Zhang and colleagues4 developed an ABM to
understand how social norms, food pricing policies, and
zoning impact people’s choices regarding where to shop
for food and what to purchase. Although the rules that
guide the decisions of a single agent are generally simple,
they can lead to emergent patterns at the population
level.As described by Homer and Hirsch,5 the SDM
approach involves development of simulation models
that portray processes of accumulation and feedback.
SDMs typically include stock variables that represent the
accumulation of resources (e.g., people, revenue, and dis-
ease), as well as a series of equations that govern flows
into and out of these stocks.5 Understanding feedback
loops and the flow and accumulation of resources can
generate insights regarding the systems that influence
diet, as well as potential policy approaches. For example,
Liu and colleagues6 developed an SDM to examine the
flow and accumulation of revenue if a city were to pass a
beverage tax to fund various combinations of policies to
improve diet and physical activity (e.g., healthy food
subsidies and new parks).Previous systematic reviews
have examined complex systems approaches to noncom-
municable disease and obesity.7,8 No systematic review
has specifically examined the application of complex sys-
tems methods to diet and nutrition, although the litera-
ture regarding complex systems approaches to diet has
expanded in recent years.9−14 The purpose of this study
is to conduct a systematic review of studies that have
used ABMs or SDMs to understand the complex systems
that influence population diet, with particular emphasis
on identifying the complex system structures explored
and methods used by each study. The paper reports key
data extracted from each study, including its purpose,
the main examined diet and nutrition outcomes, integra-
tion with empirical evidence and data, and model design
elements. The paper also overviews the main results and
insights reported in each study. This review and the data
extracted from each study will be useful for modelers
working in this area, who can build upon, refine, and
extend the concepts and methods employed in previous
models.15 Based on the findings, the paper concludes by
discussing key methodologic and substantive opportuni-
ties via which complex systems approaches can advance
understanding of population-level patterns in diet and
nutrition.
EVIDENCE ACQUISITION

The authors searched the PubMed, Web of Science, and
Literatura Latino-Americana e do Caribe em Cîencias da
Sa�ude (LILACS) databases to identify peer-reviewed
manuscripts that used ABMs or SDMs to explore diet
and other nutrition behaviors. The authors included the
LILACS database because they have interest in developing
systems models to inform nutrition policy in Latin Amer-
ica. The search was conducted in two rounds; the initial
search took place in November 2017. After completing
data extraction for the identified studies, the search was
repeated in May 2018 to identify studies published in the
intervening period. In each database, all combinations of
one of the following modeling terms and one of the fol-
lowing food terms was queried: agent based model, agent
based simulation, (system dynamics AND model), compu-
tational model; AND diet, nutrition, food, eat, drink, soda,
beverage. The search strategy was refined iteratively by
screening results to assess coverage of a set of papers
meeting the inclusion criteria of which the authors were
aware a priori. Search results were limited to those that
included the search terms in the title, abstract, or key-
words fields. Two ABM studies authored by team mem-
bers were not included in the database results. Hammond
et al.16 referred to their model as a “computational model”
in the abstract, rather than an “agent-based model”, and
the term “agent” did not appear in the title, abstract, or
keywords. As a sensitivity analysis, the term “computa-
tional model” was added to the search of Web of Science
and identified no further studies to include beyond the
paper by Hammond and colleagues; because the addition
returned several hundred studies that did not meet the
inclusion criteria, the term was excluded from the final
search. Langellier et al.17 were published in a new journal
that was not indexed in any of the databases at the time
of the search, though it has since been indexed by
PubMed. No review protocol is available.
Studies were included in the review if they met the fol-

lowing inclusion criteria:

1. They implemented an ABM or SDM.
2. They included a diet- or nutrition-related behavior as

either a primary or secondary outcome of the study.
www.ajpmonline.org
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3. The manuscript was published in full-text format in a
peer-reviewed journal (i.e., conference abstracts and
book chapters were excluded).

Studies were excluded if they reported exclusively on a
physiological simulation,18,19 owing to this study’s focus
on understanding drivers of population-level patterns.
One author screened the title and abstract of each study
to determine whether it met the inclusion criteria. If eli-
gibility was unclear, two authors then reviewed the full-
text version of the study. No studies were excluded based
on the date of publication, largely based on the desire to
include all pertinent studies and because of the authors’
background knowledge regarding the relatively nascent
state of the literature that applies complex systems mod-
els to address issues of noncommunicable disease. The
authors adhered to PRISMA guidelines for conducting
and reporting on the literature review.20 Table 1
describes the data extracted from each ABM and SDM
study and terms used throughout the manuscript.

EVIDENCE SYNTHESIS

Twenty-seven studies met the inclusion criteria, including
22 ABMs and five SDMs. Figure 1 includes further infor-
mation regarding the identification, screening, and inclu-
sion process, including reasons for exclusion. Appendix
Table 1 (available online) shows detailed information on
the purpose; dietary outcomes; design; use of data for
parameterization, calibration, and validation; and types of
insights generated for ABMs. Appendix Table 2 (available
online) shows the same information for SDMs.

Purpose
Thirteen of the 22 ABMs explored mechanisms that shape
diet,11,13,16,17,21−26 including social norms and social influ-
ence,17,22,24,25,27 food price and budgets,12,23,24 food reward
learning,16 methods of targeting interventions,11,27 residen-
tial segregation,17,28 and environmental influences.13,25,26

Twelve of the ABMs were policy-oriented4,9,10,14,29−33 and
explored policies related to residential segregation,28,29 food
and beverage pricing,4,10,12,14,27−29 food access and the food
environment,4,10,28,32,33 media campaigns and social
norms,4,29,30 youth education,14,31,32 and food labeling.9

Three of the SDM studies sought to examine multiple
integrated processes and systems that work in combina-
tion to influence diet or related outcomes.6,34,35 The pur-
pose of three SDMs was to inform healthy diet or
obesity prevention policies.5,6,36 For example, Liu and
colleagues6 developed an SDM to inform decisions
related to obesity prevention policies to be funded by
revenue generated by a sugar-sweetened beverage (SSB)
tax.
August 2019
Parameterization and Calibration
All of the SDMs and most of the ABMs leveraged empirical
data to inform parameter values. Those that did not were
highly stylized mechanistic models.16,17,25,28 Several studies
used longitudinal data to estimate the values of parameters
related to either the population (i.e., initialized the popula-
tion based on demographic and health data from the base-
line observation of a cohort study) or processes under
investigation.11,13,14,22,29 Many studies also identified values
for parameters from the peer-reviewed literature or previous
simulation studies.4−6,9,10,12−14,24,27,30−34,36 This included,
for example, the own-price elasticities of certain categories
of food12,14 and effect sizes of interventions.6,14,30 Values
derived from the literature typically originated from a range
of intervention, longitudinal, and cross-sectional studies.
Nine ABM studies and three SDM studies used calibra-

tion methods to estimate the values of parameters for which
data were not available.5,11,22,24,26,27,29,31−35 Wang and col-
leagues22 calibrated the values of parameters describing the
effect of social norms on children’s BMI and fruit and vege-
table consumption. Typically, calibration targets were based
on data collected among the population under study or a
similar population. Wang et al.22 calibrated the social norm
effects in their ABM to descriptive statistics (i.e., deciles,
means, and SDs) regarding BMI and fruit and vegetable
consumption among participants in the Early Childhood
Longitudinal Study Kindergarten Cohort. Meisel and col-
leagues35 calibrated the transition rates between BMI cate-
gories in their SDM using data regarding the distribution of
BMI observed in national data in 2005 and 2010.

Validation
Eleven ABM studies and one SDM study conducted vali-
dation through behavioral reproduction, or comparison
of model output to external data observed in the systems
under investigation.4,9−12,14,21−23,26,29,36 This typically
involved comparisons at a single point in time to
descriptive statistics produced from one or more data
sets. For example, Lee and colleagues9 used their ABM
to assess the potential effect of a policy to place point-of-
purchase warning labels for SSBs in three U.S. cities. The
study compared overweight and obesity prevalence pro-
duced by the ABM in a baseline, nonintervention sce-
nario to prevalence data collected in each city. Liu et al.6

noted that data did not exist to validate the policy pre-
dictions of the model, because the policies were counter-
factual and had not been implemented.

Agent-Based Model Design
The most common classes of agents were individuals and
households, one of which was included in all of the ABMs;
these agents made food purchasing or consumption deci-
sions. Five ABMs also included a class of food store agents



Table 1. Description of Data Extracted From Agent-Based and System Dynamics Modeling Studies

Data extracted Description

ABM and SDM

Model type Agent-based model or system dynamics model

Purpose Stated purpose of the model, as described by study authors

Primary outcome Main outcome of the model (e.g., mean BMI)

Diet and nutrition outcomes Main diet and nutrition outcome, if different from the primary outcome (e.g., mean sweetened
beverage consumption)

Subgroup estimates Whether outcomes are presented separately for subgroups of interest (e.g., by race/ethnicity)

Parameters and relationships Description of key parameters, variables, and relationships that drive the dynamic changes that
occur as the model runs

Parameterization data Data used parameterize the model, meaning to assign the values of parameters in the model.

Calibration data and methods Calibration is an iterative process through which the values of unknown parameters are “tuned” to
align specified output produced by the model with data describing the “real” system.

Validation data and methods Validation refers to the process and tests used to assess the suitability of the proposed model, and
can include sensitivity analysis, uncertainty analysis, and behavior reproduction.

Model design method Authors’ description of the process through which the structure of the model was designed, including
the model boundary (i.e., which variables, relationships, and dynamic processes to include).
Common methods include via a literature review, stakeholder engagement processes (e.g., group-
based modeling), or face validation (e.g., content experts reviewed the structure).

Feedback loops Bidirectional relationships involving two or more variables that create circles or loops of influence,
and can be either reinforcing (i.e., vicious or virtuous cycles) or balancing (i.e., regulating)

Findings Summary of findings as interpreted and reported by authors

ABM only

ABM class A classification of models as either policy, mechanistic, or a combination of the two, based on the
stated purpose of the model

Empirical anchoring A qualitative assessment of anchoring to empirical data using a three-category system: (1) low, if the
environment, agents, or parameters were stylized (i.e., implausibly simplistic) rather than linked to
empirical data; (2) medium, if some but not all factors of the environment, agents, or parameters
were linked to empirical data; (3) high, if the environment, agents, or parameters were all linked to
empirical data. Note that empirical anchoring is not intended as an assessment of the quality of the
study, but rather as a useful piece of information regarding a model’s purpose and applicability
across populations and contexts (e.g., a model that is highly anchored to data from a particular
context may produce insights about the context that are precise but highly specific, whereas a less
empirically anchored model may be less applicable to a specific context or population but have
implications that are more broadly applicable)

Agent classes Types of agents (e.g., individuals, food stores) present in the model

Agent processes and rules The processes, rules, and objectives that drive agent behaviors over time

Social networks Whether agents were organized in social networks, characteristics of the network, and use of the
network. Key characteristics include the network formation model (e.g., small world), average
degree, clustering, and reciprocity. An example use for a social network is to enable a mechanism of
social influence on diet

Dependencies Mechanism through which the outcome of an agent is directly influenced based on the outcomes of
other individuals (e.g., social influence)

Spatial sensing Description of whether the model is spatially explicit, use of space (e.g., distance between an agent
and a food store), and representation of space in the model environment (e.g., GIS space, a grid of
cells, continuous space)

ABM, agent-based model; GIS, geographic information systems; SDM, system dynamics model.
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that made periodic decisions (e.g., whether to go out of
business) based on their own set of rules.4,10,28−30

Ten of the ABMs connected agents via social networks
to explore the implications of social influence on
diet.4,10,11,17,22,25,27,30−32 Typically, social influence was
operationalized via a “follow-the-average” (FTA) mecha-
nism,37 whereby each agent’s behavior (e.g., diet) was
periodically adjusted to align with the mean behavior of
the social network.4,10,11,17,22,27 Beheshti and colleagues11
used a modified FTA mechanism, in which behavior
change only occurred if the joint pressure of both social
influence and environmental influence exceeded a pre-
specified threshold. In contrast to the FTA mechanism,
Orr et al.31,32 implemented social influence via a thresh-
old mechanism (i.e., the more “healthy” friends one has,
the more one is likely to make healthy changes).
Fourteen of the ABMs included spatial sensing, mean-

ing that agents’ decisions or behaviors were influenced by
www.ajpmonline.org



Figure 1. PRISMA 2009 flow diagram.
ABM, agent-based model; SDM, system dynamics model.
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distance to other agents (i.e., individual or store agents) or
features of the environment.4,9,10,13,16,17,25,26,28−33 In sev-
eral models, distance was operationalized via a dichoto-
mous rule such as “individual agents can shop at food
stores within one mile of their location.”10 In others, the
influence of distance was continuous (e.g., individual
agents were more likely to shop at nearby stores or to be
friends with agents that lived nearby).

System Dynamics Model Design
All of the SDMs were composed of several subsystems.
The model of Abidin and colleagues36 included subsys-
tems related to food consumption by source, energy
intake, energy expenditure, and body composition. Four
of the models explicitly included balancing or reinforc-
ing feedback loops.6,34−36 An example of a reinforcing
feedback in the SDM of Struben et al.34 is that increased
August 2019
consumption of a category of food by an individual
increased the population’s exposure to the food. This
increased exposure, in turn, increased each person’s pro-
pensity to consume the food.

Types of Insights Generated
Several of the ABM and SDM studies generated insights
about the implementation of one or multiple policy
interventions.4−6,9,10,12,14,27−34,36 For example, Orr and
colleagues32 found that an intervention to improve the
quality of the lowest-performing schools in a community
had the potential to reduce disparities in healthy diet
between black and white students, and that improve-
ments in diet were greatest when the policy was paired
with healthy social norms. The SDM of Struben et al.34

demonstrated that single-pronged interventions are inef-
fective and that curbing the obesity epidemic will likely
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require a combination of multiple, aligned efforts. Abi-
din and colleagues36 found that achieving the British
Government Offices’ goal to reverse childhood obesity
prevalence to their 2000 levels will likely require policies
that go beyond the individual level, particularly those
that create an environment that makes it easier to make
healthy choices. Collectively, these studies suggest the
importance of considering how policies can be most
effectively combined, as well as considering how mecha-
nisms like social influence and feedbacks can impact pol-
icies’ effectiveness.
Other studies looked at potential mechanisms driving

dietary patterns, such as aging5 and residential segrega-
tion.28,29 The mechanistic studies, particularly ABMs,
examined heuristics or rules that guide diet and nutri-
tion decisions; this is important, because these rules can
have difficult-to-predict consequences (i.e., emergence)
for health outcomes and the effectiveness of interven-
tions. Hammond et al.16 explored the process of food
reward learning as a potential food choice heuristic that,
in combination with high access to unhealthy food,
could explain secular trends in unhealthy eating. Studies
can also help adjudicate among multiple, reasonable
heuristics. Beheshti and colleagues23 developed an ABM
to examine multiple price heuristics (e.g., price per calo-
rie versus price per serving) that guide food purchasing
decisions. By comparing diets generated using the differ-
ent price heuristics to diets observed using data from a
national study of diet, they concluded that price per cal-
orie is likely the dominant price metric used in guiding
food purchasing decisions.
DISCUSSION

Complex systems approaches can add to an understand-
ing of diet and nutrition, but there are still clear chal-
lenges and opportunities. Findings from this review
suggest opportunities for complex systems research to
make contributions in the following areas: (1) mecha-
nisms that drive population-level patterns in diet and
nutrition; (2) decision support for diet and nutrition pol-
icy, including examination of the conditions necessary
for policy success; and (3) model validation.
First, several studies illustrate the utility of complex

systems methods for elucidating mechanisms that shape
population patterns in diet.38,39 For example, Homer et
al.5 used their SDM to estimate the health effects of pop-
ulation aging, a demographic shift underway in most
developed and many developing countries. Complex sys-
tems models like that of Homer and colleagues can help
explore how population aging and other demographic
(e.g., migration and fertility) and social processes are
likely to shape population-level patterns in diet. For
example, research suggests that the dietary patterns of
Latinos in the U.S. change as immigrants acculturate,
though the specific mechanisms through which this
occurs are not well understood.40,41 Complex systems
models can help test hypotheses regarding the dynamic
mechanisms through which immigrants both adapt to
and influence the food behaviors of their communities.
Collectively, the studies illustrate how multiple ele-

ments of complexity can interact to drive changes in
population diet. Beheshti et al.20 used an ABM to deter-
mine that price per calorie is likely the dominant price
metric used by low-income individuals in deciding what
to eat, whereas Auchincloss and colleagues23,28 explored
the important role of residential segregation in produc-
ing income disparities in diet. Taken together, these
studies may suggest an explanation for the dearth of
full-service supermarkets in poor versus nonpoor neigh-
borhoods that has been observed in many cities.42,43 Res-
idential segregation, combined with poor consumers’
purchasing preferences for cheap, energy-dense food,
may produce comparatively low demand in low-income
neighborhoods for healthy foods with a high price per
calorie, like fresh produce. These studies highlight the
utility of complex systems approaches for examining the
etiology of diet at the population level, and particularly
for understanding the implications of interactions
between policies, people, and their environments.
Several of the ABMs examined social influence as an

important driver of diet and nutrition.4,10,11,17,22,25,27,30−32

Generally, these studies used or adapted an FTA mecha-
nism first introduced by Hammond and Ornstein,37 in
which agents periodically adjust their preferences to con-
form with those of their social network. Hammond44

describes the empirical evidence suggesting that social
norms play an important role in shaping diet, but also
suggests that social influence is not the only mechanism
through which social ties have an impact. Future work
could iterate from these existing models to explore how
social influence combines with other mechanisms such as
social capital (i.e., the resources, information, and people
accessible through a social network) and social stress (i.e.,
stress generated by social relations) to influence diet.44

A second opportunity is to increase use of complex
systems models as a decision support tool for nutrition
policy. Homer et al.5 describe how a locally calibrated
version of their SDM has been adopted by county collab-
orators to inform local strategies to address chronic dis-
ease. The study employed several approaches that, if
more widely adopted, could lead to greater policy impact
of complex systems models of diet and nutrition. The
study engaged stakeholders early in the modeling pro-
cess to identify a set of interventions relevant within the
context of local public health systems and used local
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data to calibrate the model to increase relevance for local
policy decisions. Complex systems simulations have also
informed policy decisions related to tobacco control,
infectious disease control, natural resource management,
and agricultural policy.45,46 If complex systems modeling
is to become more mainstream, it is critical to engage
local stakeholders early in the modeling process and to
tailor models to be most relevant to local contexts and
policy decisions. Similarly, modelers should work with
dissemination scientists to develop a framework for
effectively and appropriately disseminating results of
complex systems studies to nonresearch audiences (e.g.,
policymakers and community members).
A particular area where complex systems models can

be useful for informing policy is in helping to identify
the conditions necessary for policy success. A salient
example is recent efforts to implement excise taxes on
energy-dense, nonessential food items like SSBs. Early
results show that a 1-peso/liter excise tax on SSBs in
Mexico has resulted in a decrease of >7% in per-capita
sales of SSBs and a 5% increase in water sales.47 Jou and
Techakehakij48 argue that taxes are most likely to be
effective in contexts like Mexico where obesity preva-
lence and SSB consumption is high and existing food
and beverage taxes are low or modest. Implementing
SSB taxes in contexts where existing taxes are already
high or where SSB consumption is low may have mini-
mal impact on obesity prevalence but cause backlash
from the beverage industry (e.g., lobbying against nutri-
tion standards and increased advertising) or the public,
and have negative unintended consequences. The mod-
els that examined beverage consumption,6,9,14 food and
beverage pricing,4,6,12,23 and food advertising30 could
serve as a foundation for future work examining how
context and starting conditions impact the success of
beverage taxation policies.
As noted by Tracy and colleagues49 and others,50,51

validation of complex systems models in public health
has been underdeveloped. An illustration of the chal-
lenge in validating complex systems models of diet can
be drawn from the multiple policy-oriented ABM studies
that sought to predict the effects of counterfactual food
and beverage taxation policies.4,14 These studies, as well
as most policy-oriented studies, were validated via com-
parison of model output to data collected in noninter-
vention, baseline scenarios. Though this approach builds
credibility in a model’s ability to produce reasonable out-
put when no intervention is implemented, it provides
few checks for understanding whether the model is
appropriate for predicting how a specific nutrition policy
will impact a population’s diet. The lack of robust valida-
tion of models’ capacity for policy prediction is particu-
larly concerning for studies in which parameters driving
August 2019
the policy effects were derived using data or estimation
methods that are insufficient for identifying a causal
relationship (e.g., use of cross-sectional estimates of the
relationship between food beliefs and diet as an estimate
of the causal effect of a change in beliefs on diet).
A third opportunity exists to build more-credible mod-

els for policy prediction, specifically within the field of diet
and nutrition. One approach available to modelers is to
leverage data from a diverse range of epidemiologic studies
of population patterns in diet, as well as evaluation data
from a diverse range of nutrition policies that have already
been implemented. For example, SSB taxes have been
implemented in the last several years in Berkeley, Philadel-
phia, Mexico City, and other contexts. Models like those
of Zhang and colleagues4 and Langellier et al.,14 which
sought to evaluate the effects of food taxes in specific local
contexts, could use evaluation data from these taxes for
retrospective validation. If such a model were able to
reproduce patterns observed as these other taxes were
implemented, it would be a step in the right direction for
building credibility in the model’s capacity for addressing
related policy questions (e.g., implementing a tax in a dif-
ferent context, or estimating the effect over a longer time
horizon or on different health outcomes). If the model
were unable to reproduce empirical patterns, this may
indicate misspecification of the values of key parameters
or that the causal structure underpinning the model does
not adequately represent the policy’s mechanisms. A chal-
lenge to this approach may be that models often do not
explicitly include or examine barriers to implementation
that impact the effectiveness of policies and programs
implemented in the real world. For retrospective evalua-
tion to work, modelers will likely need to work with stake-
holders to identify important implementation factors that
should be included in their models.52 Challenges notwith-
standing, retrospective validation represents an opportu-
nity to leverage past policies and existing dietary data sets
to develop credible and insightful models.
Another approach that could prove useful in advanc-

ing validation is iterative studies that integrate complex
systems modeling with policy intervention research. An
example of this is the Childhood Obesity Modeling for
Prevention and Community (COMPACT) study, which
pairs complex systems approaches with community-
wide child obesity interventions in several communi-
ties.53,54 The benefits are synergistic: the model can be
recalibrated and updated as new implementation and
evaluation data become available, and the intervention
can be iteratively refined based on the insights of the
model. Although this study is not specific to diet and
nutrition, the approach could be replicated with diet-ori-
ented policies, interventions, and environmental changes
taking place in cities across the globe.
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Limitations
This literature review has strengths and limitations.
Strengths include the systematic nature of the database
search and data extraction, the focus on models with a
diet or nutrition outcome, the otherwise inclusive search
terms used, and use of multiple databases. A limitation is
that the search may have omitted relevant studies that
were not in English (PubMed, Web of Science), Spanish
(LILACS), or Portuguese (LILACS), or that did not
include the search terms in the title, abstract, or keywords.
No studies were included that employed social network
analysis, nor were conceptual SDMs that were not imple-
mented within a simulation framework (e.g., those devel-
oped by stakeholders using participatory methods such as
group model building). Similarly, because the purpose of
the review was to understand how elements of complexity
(e.g., feedback loops, dynamic processes, and heterogene-
ity) impact population diet, studies were not included
that used other simulation-based approaches (e.g., the
CHOICES microsimulation).55
CONCLUSIONS

Complex systems approaches can help to elucidate driv-
ers of population diet, and to understand the implica-
tions of complex systems for nutrition policy. The
studies conducted to this point underscore the high
potential of the approach, yet opportunities remain to
build on this success to expand evidence and bring
insights to policy.
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