LAC-URBAN HEALTH WEBINAR SERIES

WELCOME

AIR POLLUTION AND HEALTH IN LATIN AMERICAN CITIES

WEBINAR

SEPTEMBER 9, 2020 11:00 AM ET

OUR AUDIENCE TODAY

OUR AUDIENCE TODAY

THE SALURBAL PROJECT

Salud Urbana en América Latina – Urban Health in Latin America

Drexel University, Philadelphia, Pennsylvania, USA National University of Lanus, Buenos Aires, Argentina Federal University of Minas Gerais, Belo Horizonte, Brazil Universidade de Sao Paulo, Sao Paulo, Brazil **Oswaldo Cruz Foundation,** Salvador Bahia, Brazil Oswaldo Cruz Foundation, Rio de Janeiro, Brazil Universidad de Chile, Santiago, Chile Pontífica Universidad Católica de Chile, Santiago, Chile Universidad de los Andes, Bogotá, Colombia Instituto Nacional de Salud Pública, Mexico City, Mexico Universidad Peruana Cayetano Heredia, Lima, Peru Institute of Nutrition of Central America and Panama (INCAP), Guatemala

City, Guatemala **Pan American Health Organization,** Washington, D.C., USA **University of California at Berkeley**, Berkeley, California, USA **Washington University in St Louis,** St Louis, Missouri, USA

SALURBAL'S RESEARCH

How do urban policies impact urban built and natural environments?

How do urban built and natural environments impact urban health outcomes, disparities, and factors related environmental sustainability?

How can cities act to improve health, reduce disparities, and support environmental sustainability?

SALURBAL DATA

- SALURBAL has compiled data for 371 cities of 100,000 people or more in 11 countries.
- This data has been linked to sub-city units and neighborhoods in these cities.

Health	Built Environments	Social Equity
 Deaths and causes of death Life expectancy Health risk factors Health-related behaviors Violence 	 Land use and urban form Transit options Traffic congestion <u>Air pollution</u> Walkability Green space Water and sanitation Housing 	 Poverty Income inequality Housing conditions Education Employment

Ş

Ę,

WEBINAR SPEAKERS

DR. NELSON GOUVEIA

Levels of air pollution and urban environment characteristics linked to higher levels of pollution in Latin American cities

DR. ANA ORTIGOZA

Air pollution and infant and child mortality in Latin American cities

COVID-19, air pollution, and environmental health inequities in Latin American cities

AIR POLLUTION (PM2.5) IN LATIN AMERICAN CITIES: LEVELS, POPULATION EXPOSURE, INEQUALITIES, AND ASSOCIATED CITY CHARACTERISTICS

Nelson Gouveia ngouveia@usp.br

University of São Paulo Medical School

AIR POLLUTION

One important type of air pollution is **particulate matter (PM)**, some smaller than 2.5 micrometers in width, which can go deep into the lungs when breathed in.

Sources of particulate matter air pollution:

HOW DOES AIR POLLUTION AFFECT THE HUMAN BODY?

Breathing in air pollution can impact many organ systems:

WORLD HEALTH ORGANIZATION AIR QUALITY GUIDELINES

The World Health Organizations recommend that air pollution levels be maintained below a certain threshold to prevent negative health outcomes:

UNHEALTHY LEVELS OF AIR POLLUTION

SALURBAL'S RESEARCH QUESTIONS: AIR POLLUTION IN LATIN AMERICAN CITIES

- What are the levels of air pollution in Latin American cities?
- Are air pollution levels in Latin American cities **meeting the WHO's air quality guidelines**?
- Are characteristics of cities linked to their air pollution levels?

AIR POLLUTION DATA FROM SATELLITE READINGS (2015)

LEVELS OF PM2.5 IN LATIN AMERICAN **CITIES IN 2015**

- Each dot represents one sub-city.
- Air pollution levels vary greatly across different cities within each country, and across countries.
- Almost 40% of cities and 55% of • sub-cities experience air pollution levels above the WHO's air quality guideline of 10 micrograms per cubic meter of air.

AIR POLLUTION EXPOSURE

Exposed to unhealthy levels of air pollution:

- 38.5% of cities
- 55% of sub-cities
- 171.1 million people total
- 12.3 million children ages under 5 years of age
- 14.1 million adults over age 65

Country	Proportion of urban population exposed to unhealthy levels of air pollution		
Argentina	71% (21,227,417 people)		
Brazil	53% (62,236,144 people)		
Central America	10% (1,139,304 people)		
Chile	86% (10,968,452 people)		
Colombia	38% (10,965,939 people)		
Mexico	67% (51,444,741 people)		
Peru	74% (13,160,574 people)		

INEQUITIES IN AIR POLLUTION EXPOSURE

- No difference by gender
- No difference by socioeconomic status
- In Argentina, Brazil, Chile, Mexico, and Peru: the **elderly** are more exposed to unhealthy levels of air pollution
- In Colombia and Central America, the **younger population** is more exposed to unhealthy levels of air pollution

CITY CHARACTERISTICS AND AIR POLLUTION LEVELS

- Larger cities
- Higher per capita gross domestic product
- Higher motorization rate
- Higher traffic congestion
- Higher street intersection density

LOWER POLLUTION

- Higher population density
- More green space
- Presence of mass transit

POLICY IMPLICATIONS: WHAT CAN CITIES DO?

LAC-URBAN HEALTH WEBINAR SERIES

EFFECT OF AIR POLLUTION ON UNDER-5 MORTALITY IN LATIN AMERICAN CITIES

Ana Ortigoza afo25@drexel.edu Twitter: @AnaOrtigoza14

WHY IS THIS IMPORTANT IN LATIN AMERICA?

- Almost 10% of the population in Latin America is under five years of age.
- More than 80% of Latin Americans live in cities, where air pollution levels are among the highest in the world
- Limited evidence on the effect of air pollution on infant and child health in the region, especially in small and medium-sized cities.

CHILDREN ARE MORE VULNERABLE TO AIR POLLUTION

- Immature airways and lungs
- Immature kidneys and liver less ability to filter toxins
- High breathe rate

• Mouth breathing

• Lots of time outside

RESEARCH QUESTIONS

- Are increases in air pollution (PM2.5) <u>over</u> <u>time</u> linked with mortality among children under 5 years of age?
- Is this association different for infants (less than one year) compared to young children (1-4 years)?
- What are the potential actions at the local level that could be motivated by our research findings?

TECHNICAL NOTES

Setting

- 337 cities in Argentina, Brazil, Chile, Colombia, Costa Rica, Guatemala, and Mexico
- 1,152 sub-city units in these cities
- Study period 2010 -2015

Air pollution exposure

• Average annual levels of air pollution (micrograms of PM2.5 per cubic meter of air) for each sub-city unit

Outcomes

- Under 5 mortality rate: Number of deaths before the fifth year of life for every 1,000 live births
- Infant mortality rate: Number of deaths during the first year of life for every 1,000 live births
- **Child** mortality rate: Number of deaths of children between 1-4 years of age per 10,000 children in that age group

INCREASES IN AIR POLLUTION OVER TIME ARE ASSOCIATED WITH INCREASES IN UNDER-5 AND INFANT MORTALITY IN LATIN AMERICAN CITIES

If cities with the lowest levels of air pollution in our sample (4.5 μ g/m³) became similar to those at the highest levels (24.0 μ g/m³) we would observe

Under-five mortality

- ~ 6% increase in U5MR
- 9.4 additional deaths per 1,000 live births to the mean U5MR (15.7 deaths/ 1,000 live births)

Infant mortality

- ~ 8% increase in IMR
- 10.8 additional death per 1,000 live births to the mean IMR (13.6 deaths/ 1,000 live births)

Note: 4.5 μ g/m³ corresponds to the 5th percentile and 24 μ g/m³ corresponds to the 95th percentile of sub-city level exposure that we observed

THESE ASSOCIATIONS OVER TIME ARE INDEPENDENT OF THESE OTHER URBAN CHARACTERISTICS

Population size and growth	City population size 2010-2015	
Housing and living conditions	 % households with piped water in the house % of households with overcrowding conditions (3+/room) % population 15-17 age attending school 	
Service provision	 % of households with water connected to municipal network % of households with sewage system connected to municipal network 	
Population education	 % population 25+≥ high school level % population 25+≥ university level 	
Mass transit availability	Presence of either subway or bus rapid transit (BRT) networks	
GDP per capita	Yearly Gross Domestic Product per capita for each city	

CONCLUSIONS

COVID-19 AND AIR POLLUTION IN LATIN AMERICAN CITIES

Josiah Kephart Twitter: @JLASHK Post-Doctoral Research Fellow, SALURBAL

LATIN AMERICA IS THE GLOBAL EPICENTER OF COVID-19

- 7 of the top 20 countries with highest % of the population with a confirmed COVID-19 case are in Latin America and the Caribbean
- Within last 7 days, 10 of top 20 countries are in Latin American and the Caribbean

Share of population with confirmed COVID-19 case

COVID-19 RESTRICTIONS HAVE LED TO SHARP TRAFFIC REDUCTIONS

Many countries and cities in Latin America have implemented "lockdowns" and/or stay-at-home orders to slow the spread of COVID-19

Reductions in traffic congestion in four Latin American cities, compared to pre-lockdown levels

AIR POLLUTION HAS DROPPED DURING COVID-19 RESTRICTIONS

LIMA, PERU

SANTIAGO, CHILE

IADB, https://www.iadb.org/en/topics-effectiveness-improving-lives/coronavirus-impact-dashboard

MEXICO CITY

SÃO PAULO, BRAZIL

WE COMPARED AIR POLLUTION* LEVELS DURING COVID-19 LOCKDOWNS WITH PREVIOUS YEARS

SOME CITIES HAD MAJOR REDUCTIONS IN AIR POLLUTION COMPARED TO PREVIOUS YEARS, WHICH BROUGHT LEVELS MUCH CLOSER TO GUIDELINES

WHY DOES THIS MATTER?

- Pervasive pessimism about reducing air pollution
 - "Nothing we can do about climate, geography, etc."
- COVID-19 lockdown reductions are unintended
- Long-term goal is efficient, targeted policies that reduce air pollution while:
 - Prioritizing equity
 - Limiting economic cost
- Are real-life air pollution reductions in 2020 enough to impact public health?

HYPOTHETICAL SCENARIO: AIR POLLUTION IS REDUCED LONG-TERM

- How would deaths in each city change if current reductions of a major air pollutant (PM_{2.5}) were maintained long-term?
 - Assuming...
 - No changes in other air pollutants (outdoor or indoor)
 - Only looking at adults aged 30+ years
 - Deaths from any cause

https://cdn.citylab.com/media/img/citylab/2017/05/mexicocity/original.jpg

REDUCING AIR POLLUTION COULD LEAD TO LARGE REDUCTIONS IN DEATH

CRUCIAL OPPORTUNITY TO RETHINK LONG-TERM AIR POLLUTION

- Current levels of ambient air pollution cause 145,000 non-Covid-19 deaths in Latin America and the Caribbean every year
- May get worse with a return to carbased transit
- Covid-19 reopening: critical opportunity for policies and structural changes which reduce air pollution, prevent chronic diseases, and promote health equity

https://upload.wikimedia.org/wikipedia/commons/4/4f/Guatemala_City_%28663%29.jpg

LACURBANHEALTH.ORG

LEARN MORE AND CONTACT US

LACURBANHEALTH.ORG SALURBAL@DREXEL.EDU

> FOLLOW US @LACURBANHEALTH