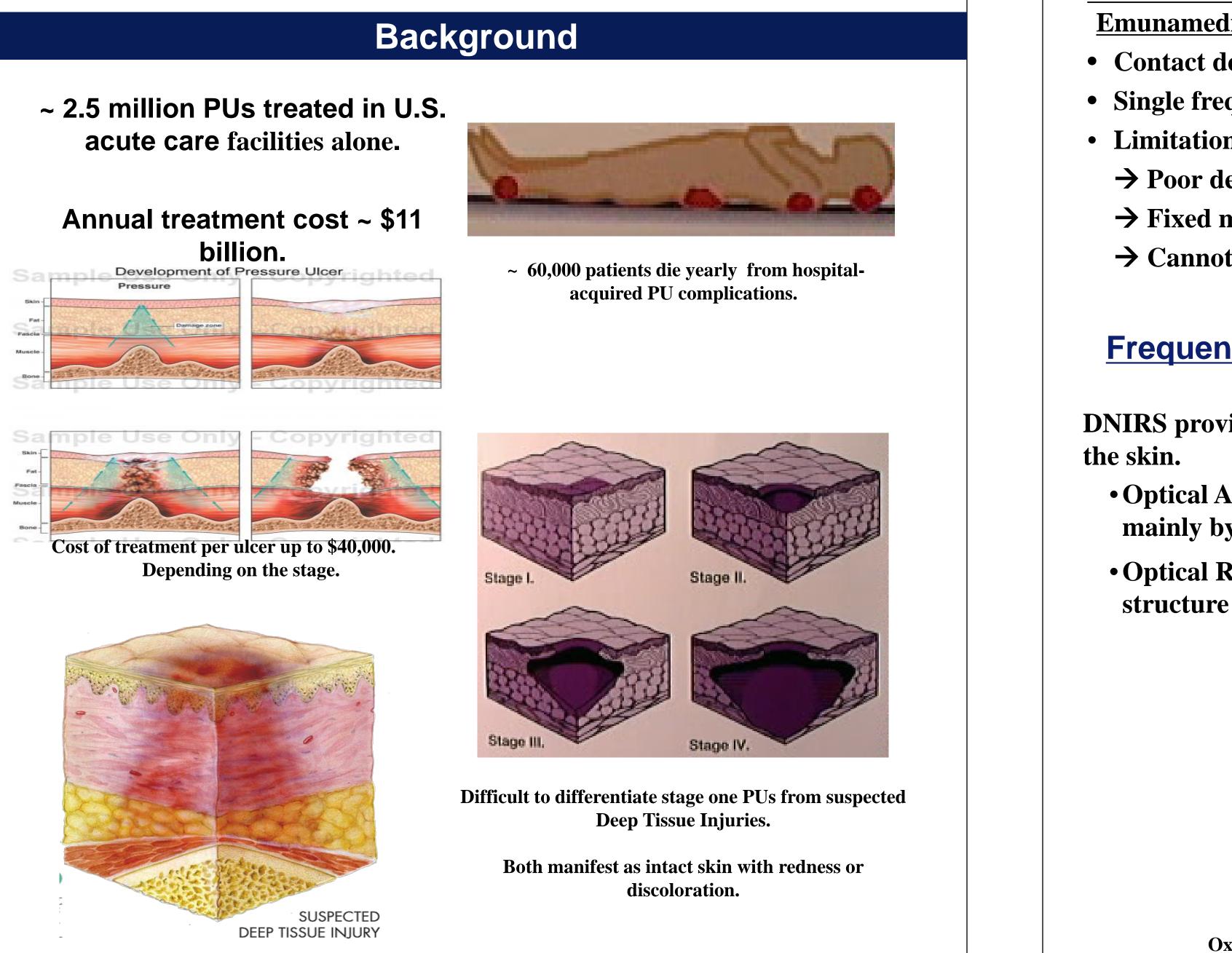


Multi-frequency Non-contact Near Infrared Device for the Diagnosis of Pressure Ulcers


Summary

Proper classification of existing pressure ulcers (PUs) is critical because it drives treatment recommendations. The proposed device will utilize DNIRS technology to quantify the tissue optical properties and concentrations of oxy (HbO_2) and deoxyhemoglobin (Hb) levels at multiple depths within skin regions likely to develop pressure ulcers. This will allow physicians to assess if a Deep Tissue Injury (DTI) exists. The proposed system may help prevent some surgical procedures altogether as well as engender a more judicious use of expensive wound care therapies thereby having the potential to reduce the overall cost of wound care management.

Research Objective

The goal of the proposed research is to implement a non-invasive optical system enabling healthcare professionals to:

- Objectively measure the health of skin, subcutaneous fat, and muscle.
- Provide an evidence-based method for non-invasively assessing depth of tissue damage at multiple depths.
- Determine if a suspected Deep Tissue Injury exists under high risk areas using a non-contact approach.
- Allow proper classification of existing pressure ulcer.

Coulter-Drexel Translational Research Partnership Program

Dr. Leonid Zubkov¹(PI), Dr. Michael S. Weingarten²(Clinical PI), Dr. Michael Neidrauer¹(Co-PI), David Diaz¹(Graduate Student)

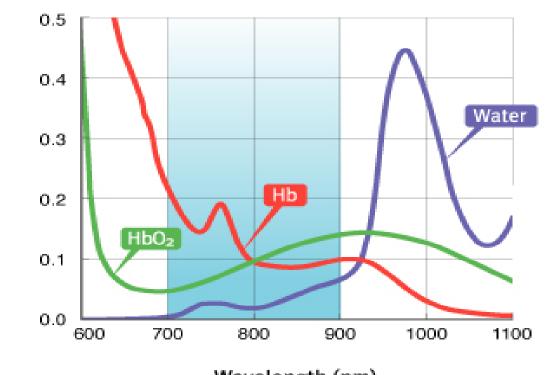
Hypothesis

The hypothesis underlying this research is that changes in hemoglobin oxygenation can be used to distinguish non-viable tissue from the living dermal tissue. Pressure ulcers were chosen as an initial application for this system due to the difficulty of PU classification and differentiation (specifically between Stage I and Deep Tissue Injury).

State of the Art

Braden Scale	Gosnell Scale	Norton Scale	Waterlow Scale
Subscales with scores of 1 to 4 include sensory perception, nobility, activity, moisture, and nutrition. Subscales with scores of 1 to 3 nclude friction and shearing. Fotal possible points range from 6 to 23. Lower scores mean higher risk. Critical risk score (cut-off score) is 16 for younger clients and 18 for older adults, African-Americans, Asians, and Latinos. High-risk scores range from 8 to 13 and lower risk scores are from 14 to 18. Sensitivity: 53% Specificity: 100% Positive Predictive Value: 100% Negative Predictive Value: 58% Accuracy: 66% ^{13,14}	Mental status subscale is scored from 1 to 5. Subscales with score of 1 to 4 include continence, mobility, and activity. Nutrition subscale is scored from 1 to 3. Variables assessed but not scored include vital signs, skin appearance, diet, fluid bal- ance, medications, and inter- ventions. Total possible points range from 5 to 20. Critical score for pressure ulcers is 16. Sensitivity: 85% Specificity: 83% Positive Predictive Value: 69% Negative Predictive Value: 85% Accuracy: 83% This scale is useful for clients with neurological or orthope- dic diagnoses. ¹³	Subscales with score of 1 to 4 include physical condition, mental state, activity, mobility, and incontinence. Total possible points range from 5 to 20. Lower scores indicate higher risk. A score of 16 or less means high risk for pressure ulcers. Sensitivity: 81% Specificity: 59% Positive Predictive Value: 93% Negative Predictive Value: 63% Accuracy: 66% This scale is useful for older clients. ¹³	This scale is based on the Norton Scale. Subscale scores vary but include weight/height, visual assessment of the skin, gen- der, age, continence, mobility, appetite, medications, and special risk factors. The score of 10 to 14 indicates risk for pressure ulcers. A score of 16 is the critical score level. Sensitivity: 63% Specificity: 61% Positive predictive Value: 61% Negative predictive Value: 84% Accuracy 77% ¹³

Scales do not objectively assess health of skin and subcutaneous tissue unlike our system.

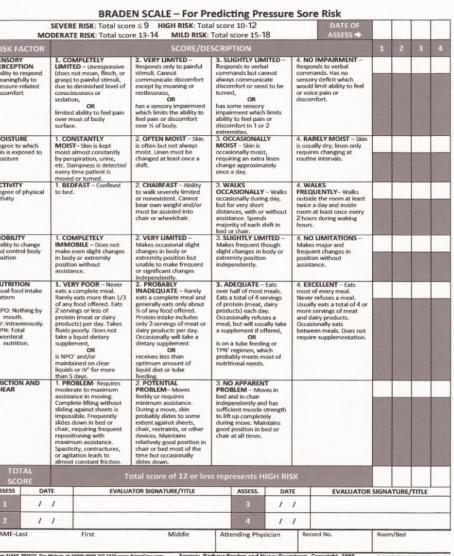

Previous DNIRS System (licensed to Emunamedica)

- Contact device
- Single frequency
- Limitations:
- \rightarrow Poor depth resolution
- \rightarrow Fixed measurement locations
- \rightarrow Cannot measure R < 4 mm

Frequency-Domain Near Infrared Spectroscopy (DNIRS)

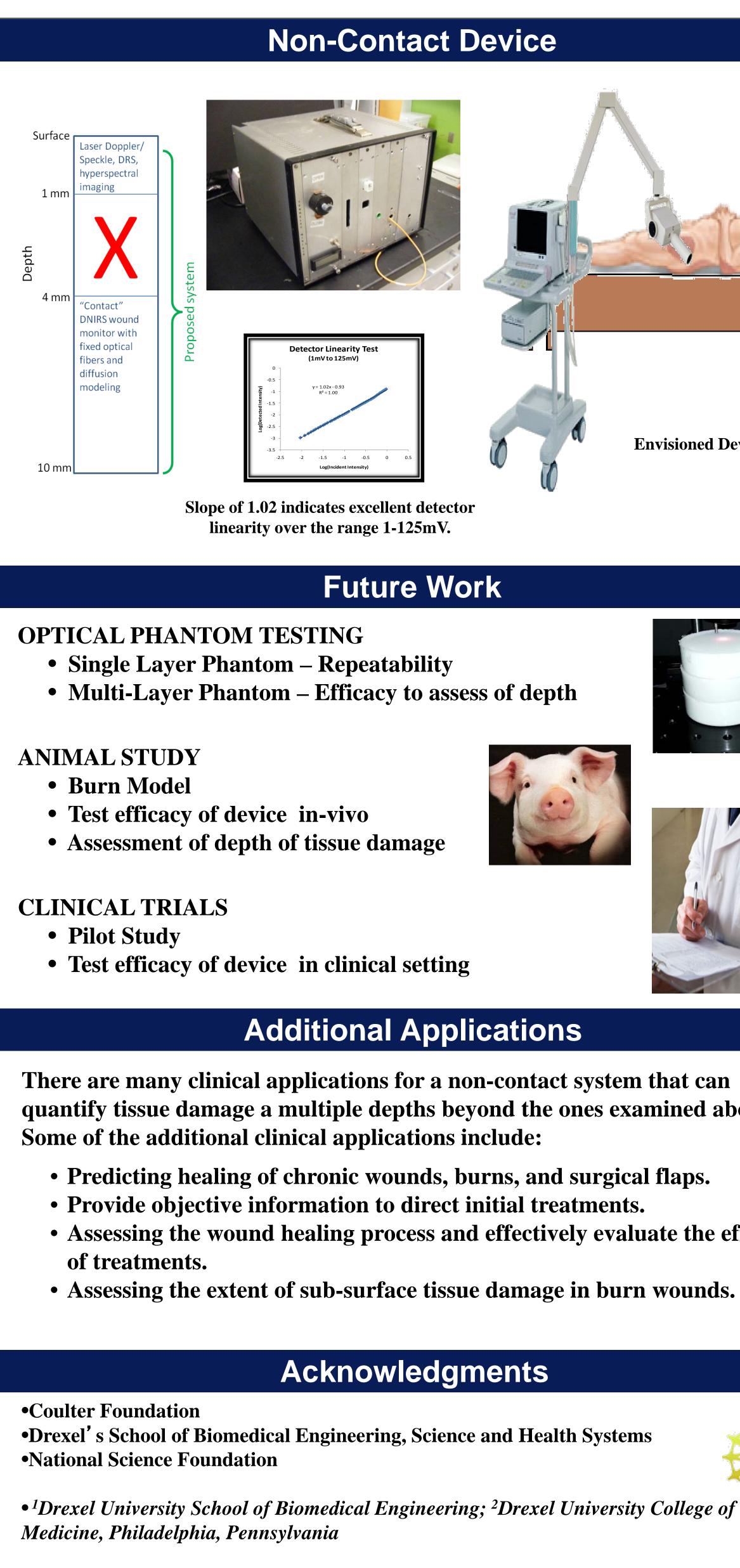
DNIRS provides quantitative information about tissue beneath the surface of

- Optical Absorption Coefficient (μ_a) at NIR wavelengths is determined mainly by deoxygenated and oxygenated hemoglobin.
- Optical Reduced Scattering Coefficient (μ_s') gives information about tissue structure (organization, composition).



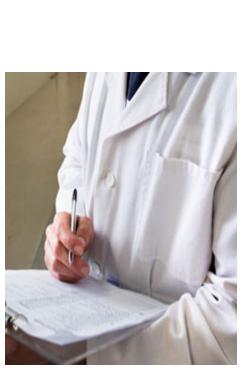
Wavelength (nm)

Oxy and deoxyhemoglobin concentrations ([*HbO*₂] and [*Hb*]) are calculated from measured values of μ_a


- **Risk of formation currently assessed with qualitative** tools such as Braden, Norton, and Waterlow scales.

- **Proposed DNIRS System**
- Non-contact device
- Multiple frequencies
- Advantages:
 - \rightarrow Precise depth resolution
 - \rightarrow Flexible measurement locations
- \rightarrow Wide range of depths (0.15 mm) to 1 cm)

This research was initiated under the leadership of Dr. Elizabeth Papazoglou. Her memory and contributions will never be forgotten.


Non-Contact Device

Envisioned Device

Future Work

NSF

Additional Applications

quantify tissue damage a multiple depths beyond the ones examined above.

• Assessing the wound healing process and effectively evaluate the efficacy

• Assessing the extent of sub-surface tissue damage in burn wounds.

Acknowledgments

