A Voltage-Activated Phase-Change Agent

Abstract

We present a voltage-sensitive phase change agent comprising an aqueous emulsion of surfactant-coated liquid perfluorocarbon droplets nested within a negatively charged phospholipid bilayer. The sensitivity to voltage allows, via exposure to an electric field, vaporization - and resultant acoustic activity - of the perfluorocarbon droplets at an ultrasound intensity that is otherwise insufficient to cause vaporization. The result is a phase change agent for which activation depends not on ultrasound intensity but rather on the presence of an electric field. Accordingly, we offer the first enhanced ultrasound contrast agent (ElectrastTM) that takes advantage of the electrical activity of the heart and leads to selective activation at a fixed mechanical index (MI). The voltage-sensitive agent activates selectively in the coronary circulation, giving enhanced ultrasound contrast within the myocardium while leaving other Specifically, in a closed chest swine study, the contrast regions largely unenhanced. enhancement between the myocardium and the left ventricle increased by 36.4 dB +/- 0.2 upon injection of a charged, nested PCA formulation at a fixed MI of 0.9 (GE Vivid i). Similar enhancement was observed in rats, and the contrast-to-tissue ratio increased by nearly 10 dB at an MI of 0.28 upon exposure to an electric field of 1 V/cm in a tissue-mimicking phantom. Additionally, ultrasound-induced leakage of calcein, a water-soluble fluorescent dye, from a nested, charged PCA formulation more than doubled at a peak negative pressure of 0.5 MPa upon exposure to an electric field of 0.25 V/cm. These results suggest that the voltage-sensitive phase change agent is a candidate for myocardial perfusion imaging.