For a better experience, click the Compatibility Mode icon above to turn off Compatibility Mode, which is only for viewing older websites.

Center for Advanced Microbial Processing (CAMP)

The Center for Advanced Microbial Processing's mission is to identify and isolate the genetic components responsible for the generation of the target molecules in non-model organisms and to engineer them for insertion into model bacterial hosts with the ultimate goal being the efficient and cost-effective production of the target molecule.

At the Center for Advanced Microbial Processing we will work toward our goals through interactions between three state-of-the-art facilities:

  • A next-generation sequencing center (led by Dr. Garth Ehrlich) which will allow for mining of microbial genomes, metagenomes and hologenomes that we identify as producers of target molecules
  • A biochemistry and proteomics analysis laboratory (led by Dr. Joris Beld), which will allow for screening, identification, analysis and purification of target molecules
  • A microbial engineering lab for the cloning of genes of interest and the efficient production of target molecules

Antibiotic pipelines in industry are drying up, and more and more pathogens are emerging with resistance to our current treatments. The goal of the Center for Advanced Microbial Processing (CAMP) is to tackle this problem by using microbes as both a source and a tool for the discovery and production of therapeutic agents and novel biologicals.

Nature is extremely efficient at producing complex molecules from very simple starting materials. For example, plants and algae turn sunlight and CO2 into many diverse molecules, including DNA, RNA, proteins, sugars and lipids. Other microbes like many bacteria utilize simple sugars (e.g., glucose) as their food source. Humans have also learned how to make many of these complex molecules synthetically in the laboratory, however the costs and effort can be staggering. Allowing microbes make these molecules for us is the founding principle of biotechnology. This process only requires food for the microbe (e.g., sugar for bacteria), which provides us the product relatively inexpensively. On top of that, bacteria can be fermented at high densities and growth rates, making this biotechnological process fast and efficient.

This approach has only been commercialized in a few cases, often because the underlying biochemistry and microbiology of the microbe is not well understood. For example, in some cases the product itself can be food for the bacteria and thus will be eaten before we can isolate it. Sometimes the product is toxic to the producer. In other cases, regulatory elements can prohibit overproduction or there is simply not sufficient intermediate substrate present in the cell for product formation. These are just a handful of the challenges in designing a microbial platform for rapid, high-yield production of high-value products, like biofuels, medicines or building blocks for the chemical industry.

In order to solve many of these hurdles, researchers have ushered in an era of "metabolic engineering" or "synthetic biology." In this process, we first gain genomic, proteomic and metabolic insight from the bacteria, so that we can build a model of the bacteria in silico. This model describes all the genes, proteins and metabolites in the bacteria and allows us to define metabolic bottlenecks beforehand. With surgical precision we can then edit the genome of the bacteria to remove these hurdles, by insertion of extra genes or deletion and mutation of existing genes. In the end, the goal is to custom design a bacterial strain that produces the desired product in greater amount and faster the original progenitor strain. Engineering the biosynthetic clusters responsible for the production of high-value molecules (e.g., novel drugs) into hosts that are easier to grow is the holy grail of modern metabolic engineering.

 
In the Media
 

June 28, 2018: PhD candidate Kayla Socarras was quoted in a Bicycling story about how to protect yourself from ticks this summer.

May 9, 2018: Kayla Socarras, a PhD candidate, was interviewed for a WTXF-TV (FOX-29) news segment about the migration of dangerous, exotic ticks that are traveling internationally with people to the United States and not dying out over mild winters.

April 27, 2018: Kayla Socarras, a PhD candidate, was quoted in a Men’s Health story about how to protect yourself against Lyme disease during tick season.

August 23, 2017: Garth Ehrlich, PhD, was quoted in a Philadelphia Inquirer story about a project his lab is undertaking to collect ticks from the public and use advanced gene sequencing techniques to study their microbiomes. Dr. Ehrlich’s research study was also quoted in a KYW-Newsradio (1060-AM) on August 26.

May 19, 2017: A Bucks County Courier Times article about the difficulty in diagnosing and treating Lyme disease, which quoted Garth Ehrlich, PhD, was picked up by WCAU-TV (NBC-10)'s website.

May 12, 2017: Garth Ehrlich, PhD, was quoted in a Bucks County Courier Times story about the difficulty in diagnosing and treating Lyme disease.

March 29, 2017: Joshua Chang Mell, PhD, was quoted in a Cystic Fibrosis News Today story about a recent study he published, which profiled the genes of bacteria commonly found in the lungs of cystic fibrosis patients.

July 15, 2016: Garth Ehrlich, PhD, was quoted in a Huffington Post story about how the bacteria that causes Lyme disease can linger in the body and cause other illnesses.

May 24, 2016: Garth Ehrlich, PhD, was interviewed on KYW-TV (CBS-3) about how to check for and properly remove ticks from the body to prevent Lyme disease.

May 21, 2015: Garth Ehrlich, PhD, was quoted in a WHYY/Newsworks story about Lyme disease.

May 3, 2015: Garth Ehrlich, PhD, was quoted in a Philadelphia Inquirer article about Lyme disease. The article also mentioned that the College of Medicine was the host of a recent two-day international symposium on the topic.

 
News and Announcements
 

Donald J. Hall, PhD candidate, presenting 'JEKMag Tech: High Throughput Technology to Grow and Assess Bacterial Biofilm Sensitivity to New Drugs' at the 2108 ASM Conference

Donald Hall Presents at ASM Conference

Donald J. Hall, PhD candidate in the Departments of Microbiology & Immunology and Chemistry, presented his poster entitled "JEKMag Tech: High Throughput Technology to Grow and Assess Bacterial Biofilm Sensitivity to New Drugs" at the 2018 American Society for Microbiology Conference on Biofilms, October 7 – 11, 2018, in Washington, D.C.

The conference provided an interdisciplinary platform to discuss the latest biofilm research. Topics included the molecular basis and regulation of biofilm formation, biofilms in natural and industrial systems, diagnosis and study of clinically-relevant biofilms, and emerging technologies and their application to biofilms.


Yves Mone, PhD, speaking at the IMMID seminar in September

"Omics Studies in Ecological Interactions"

On Wednesday, September 12, Garth Ehrlich, PhD, hosted his postdoctoral researcher, Yves Mone, PhD, at the IMMID research seminar. Dr. Mone joined the Ehrlich Lab after serving as a researcher at the Health Department of the French Institute for Development (IRD).

Dr. Mone’s research focuses on the complexities of Lyme disease.


"Towards Translational Evolutionary Biology Using the Lens of Genomics"

On Wednesday, April 25, Joshua Chang Mell, PhD, hosted Vaughn Cooper, PhD, associate professor of microbiology and molecular genetics at the University of Pittsburgh’s School of Medicine.

Dr. Cooper presented his research, entitled "Towards Translational Evolutionary Biology Using the Lens of Genomics." The primary goal of Dr. Cooper’s lab is to understand how bacterial populations evolve and adapt to colonize hosts and cause disease.

Vaughn Cooper, PhD, presenting 'Towards Translational Evolutionary Biology Using the Lens of Genomics'

See all news

 
 Back to Top

Garth D. Ehrlich, PhD

Garth D. Ehrlich, PhD
Founder and Executive Director of CAMP; Professor of Microbiology & Immunology; Professor of Otolaryngology-Head and Neck Surgery