For a better experience, click the Compatibility Mode icon above to turn off Compatibility Mode, which is only for viewing older websites.

Physics Colloquium: Measuring the Anomalous Magnetic Moment of the Muon at Fermilab

Thursday, February 27, 2020

3:30 PM-4:30 PM

David Flay, PhD, University of Massachusetts, Amherst

 

 The Standard Model of particle physics describes the properties and interactions of all known subatomic particles in the universe, but is known to be incomplete. There are many frontiers looking for the missing pieces to the puzzle, including new particle searches at the Large Hadron Collider at CERN; dark matter searches across the world including the U.S., South America, and the U.K., and detailed studies of neutrino properties, particularly neutrino oscillations, to name a few. Precision tests of the Standard Model offer an alternative path to new physics searches. One of the most precise measurements in physics, the anomalous magnetic moment of the muon—commonly discussed in the literature as the muon anomaly aμ ≡ (gμ − 2)/2—remains a possible indicator of physics beyond the Standard Model. This is because the discrepancy between theory and experiment is roughly 3.5 standard deviations.

To address this discrepancy, a new experiment at Fermilab has been constructed and is now running to determine aμ to a precision of 140 parts per billion. To measure aμ, a polarized muon beam is injected into a 14-m diameter magnetic storage ring and two frequencies are measured: the rate at which the muon polarization rotates relative to its momentum, ωa, and the magnetic field normalized to the free-proton Larmor-precession frequency, ωp. In this talk, an overview of the experiment will be presented, along with an update on the current operations and analysis status.

Contact Information

Professor Christina Love
love@drexel.edu

Remind me about this event. Notify me if this event changes. Add this event to my personal calendar.

Location

Disque Hall, Room 919, 32 South 32nd Street, Philadelphia, PA 19104

Audience

  • Undergraduate Students
  • Graduate Students
  • Faculty