For a better experience, click the Compatibility Mode icon above to turn off Compatibility Mode, which is only for viewing older websites.

Physics Colloquium: Universal Properties of Fluorescence Intermittency in Nanoscale Emitters

Thursday, May 2, 2019

3:30 PM-4:30 PM

Boldizsár Jankó, PhD, University of Notre Dame

Virtually all known fluorophores exhibit mysterious episodes of emission intermittency. A remarkable feature of the phenomenon is a power-law distribution of on- and off-times observed in colloidal semiconductor quantum dots, nanorods, nanowires and some organic dyes. More recently, fluorescence intermittency has also been detected in a quasi-two dimensional material: reduced graphene oxide.

For nanoparticles, the resulting power law extends over an extraordinarily wide dynamic range: nine orders of magnitude in probability density and five to six orders of magnitude in time.

Exponents hover about the ubiquitous value of -3/2. Dark states routinely last for tens of seconds—practically forever on quantum mechanical timescales. Despite such infinite states of darkness, the dots miraculously recover and start emitting again. Although the underlying microscopic mechanism responsible for this phenomenon remains a mystery and many questions persist, I argue that substantial theoretical progress has been made. Within a single phenomenological framework we succeeded to capture the universal behavior of a wide range of nanoscale emitters and, in some cases, to reveal microscopic scenarios that could lead to emission intermittency and optical 1/f noise in these systems.

Contact Information

Professor Goran Karapetrov

Remind me about this event. Notify me if this event changes. Add this event to my personal calendar.


Disque Hall, Room 919, 32 South 32nd Street, Philadelphia, PA 19104


  • Undergraduate Students
  • Graduate Students
  • Faculty