For a better experience, click the Compatibility Mode icon above to turn off Compatibility Mode, which is only for viewing older websites.

What is Translational Research?

3d printing tissue engineering

Have you ever been curious how amazing new discoveries in science and technology reach medical professionals to save lives and improve healthcare? The process is called translational research and it applies the latest discoveries in science to solve unmet medical needs bringing forth lifesaving solutions to the hands clinicians and medical professionals.

While basic research in the biomedical field seeks to ‘understand’, translational research seeks to ‘fix’. Translational research, or ‘use-inspired’ research, builds upon basic scientific research synthesizing knowledge to design a new or improved drug, device, diagnostic, or behavioral intervention.

The goal of translational research is to advance the project towards the next step in translation: pre-clinical research, clinical research, clinical implementation, and public health stages. To accomplish this, translational research requires close collaboration of engineers, scientists, and clinicians working as a team across traditional boundaries bridging government agencies, hospitals, academia, and industry.

Why is Translational Research Important?

Scientific discovery outpaces the ability to translate discoveries to life saving solutions in the market. In fact, many scientific discoveries and observations do not advance down the development pipeline. With more talent and better leadership, translational research and lifesaving observations and insights are less likely to be ‘lost in translation’ because of factors such as funding, organizational barriers, and lack of technical expertise.

New approaches to translational research are accelerating innovations to reach the patient and improve population health sooner. When translational research succeeds, gaps in the medical care system are closed, lives are saved and lives are enhanced. Higher quality healthcare for all leads to a healthier and a more economically viable population.

Drexel Biomed's Impact in Translational Research

By bridging traditional organizational structures in the sciences, medicine, engineering and entrepreneurship, Drexel BIOMED has become a center of gravity for translational research that not only creates life-saving solutions but also leads to partnerships with regional and global commercialization communities to bring these solutions to market.

BIOMED is a leader in creating intellectual properties poised for commercialization with a total of 125 patents, which includes 90 US and 35 foreign issued patents. We have forged relationships with a network of partners bridging academia, industry and government to harness our combined potential regionally, nationally and internationally and to fulfill our social contract. Global Innovation Partnership (GIP) is an endowed initiative of Drexel University. Hosted by the School of Biomedical Engineering, Science and Health Systems, GIP is focused on academic programs that enable partners from research, entrepreneurship, business and investment communities to accelerate life saving solutions to healthcare worldwide.

Evidenced by the award of Coulter-Drexel Translational Research Partnership Program, Drexel BIOMED is a national best practice in translational research recognized by the Coulter Foundation. The program provides mentoring, project management, and funding to promising translational projects with the goal of moving innovative technologies to clinical application through commercialization.

Showcase: Examples of Translational Research in Motion

Breast Cancer Detection / Piezoelectric Fingers / Biosensors Platform

A new device may enable breast cancer screening and cancer detection in populations where mammography is not widely available or successful, including women in developing countries, and those under the age of 40. Dr. Wan Shih with Dr. Wei-Heng Shih and their team at Drexel University have developed a non-invasive, radiation-free, portable device used for breast cancer detection based on measurements of tissue elasticity. The goal of the project is to develop a portable, radiation-free, breast scanning system that not only is capable of locating small tumors but also able to predict tumor malignancy.

 

Chronic Wound Healing / Biomedical Ultrasonics: Sensors Platform

Drexel researchers have developed a light-weight, wearable low-power, low-frequency ultrasound applicator that can be used for the treatment of chronic wounds. This device has been tested in a limited clinical study, in which chronic venous ulcer wounds were treated at Dr. Weingarten’s Wound Management Center, Drexel University College of Medicine. “There is no other existing treatment you can compare it with,” said Peter Lewin, PhD, the project’s principal investigator and the Richard B. Beard Distinguished University Professor in the School of Biomedical Engineering, Science and Health Systems. “If we can prove this is effective for a large group of patients, then we have the potential to solve a very costly and debilitating health problem.”

 

Traumatic Brain Injury / Near Infrared Based Optical Imaging Platform

A Drexel team and InfraScanner, a local medical firm, have committed to a contract with the U.S. Navy and Marine Corps to work on a device that will evaluate brain injuries. The device uses near-infrared light to detect brain bleeds. Using a physics equation, Infrascanner can tell the volume of the blood in the brain. Although some of the light is absorbed in the brain tissue, the rest returns to the device with information. Drexel biomedical engineers participated in the design and testing of the original Infrascanner and will utilize their expertise in the optical brain imaging technology they've been developing.

Student Opportunities

Undergraduate Opportunities: Translational Design Clinical Immersion Co-op

The Translational Design Clinical Immersion Co-op is part of an innovative new Junior Design / Senior Design program in the School of Biomedical Engineering, Science and Health Systems. This program is funded by the National Institutes of Health and gives junior-year students the opportunity to spend their co-op cycle working alongside clinicians and biomedical engineers to identify unmet clinical needs and translate novel technologies from bench to bedside.

Learn How to Apply

Graduate Opportunities: Coulter Fellowship Program

The Coulter Fellowship Program is an innovative opportunity to work with research teams, as well as to seamlessly learn about the industry landscape for upcoming biomedical technologies. Qualified students get hands on experience with the commercialization process in translating a technology from university laboratories to the real world.

Learn How to Apply

Meet a Biomed Dragon

That Completed Clinical
Immersion Co-op


Julie Speer

Julie Speer
BS Student, Biomaterials and Tissue Engineering Concentration

Watch Video

Meet a Biomed Dragon

That Completed
Coulter Fellowship Program


Chiranjiv Chevli

Chiranjiv Chevli
MS in Biomedical Engineering, Coulter Fellow

Learn More