Mechanical Engineering and Mechanics

MEM 413 HVAC Loads

Fall 2006

Designation:	Elective
Catalog Description:	State-of the art design methods of calculating building peak heating and cooling loads; Human comfort and indoor air quality, standards for ventilation air, air infiltration into buildings, solar loads on buildings, Degree-day methods of calculating annual energy use.

Prerequisites: Thermodynamics II- MEM310 and Heat Transfer MEM 345

Textbook(s) and other required material:

- 1. Required: <u>Heating and Cooling of Buildings</u>, Kreider, J.F., Curtiss, P.S. and Rabl, A., 2002 2nd Edition, McGraw-Hill, New York, NY.
- 2. Additional handouts as required

Course Objectives:

- 1. Apply principles of heat transfer and thermodynamics to heat flows in buildings
- 2. Analyze human comfort, and determine necessary indoor conditions to achieve it
- 3. Describe effect of indoor air pollutants and ways to control them
- 4. Determine solar irradiation on surfaces
- 5. Calculate air infiltration rates into building structures
- 6. Calculate the various components which constitute peak heat loads in buildings
- 7. Calculate the various components which constitute peak cooling loads of buildings
- 8. Calculate annual energy use of buildings using degree-day and bin methods

Topics:

- 1. Introduction to HVAC&R profession
- 2. Review of heat transfer applied to buildings
- 3. Solar radiation: basics and intensity on surfaces
- 4. Windows and daylighting
- 5. Infiltration in buildings
- 6. Heating load calculations
- 7. Cooling load calculations- CLTD/CLF method and the Transfer function method
- 8. Thermal comfort and indoor air quality
- 9. Energy estimation methods

Class Schedule: 3 hours/week lecture (3 credits)

Contribution to Professional Component:

Contributes toward the 1 ¹/₂ year of engineering topics appropriate to developing the ability to work in the thermal systems area. Prepares students for professional practice in HVAC&R system design.

Relationship to Program Outcomes:

Outcomes a - k	Content	Explanation	Evidence
a. An ability to apply knowledge	2	This course requires the students to	Homework, Exams,
of mathematics, science		apply their knowledge of	Design Project
and engineering		thermodynamics and heat transfer	
		as well as synthesize their	
		knowledge of mathematics,	
		science, and engineering.	
b. An ability to design and conduct	2	The software assignment involving	Written group report counts
experiments as well as		designing the HVAC&R systems of a	for 10% of total grades;
to analyze and interpret data		building using a detailed state-of-	some groups were also
		the-art building energy simulation	asked to make
		program	presentations in class
c. An ability to design a system,	2	Software project as described	As explained above
component or process to meet		above	·
desired needs			
d. An ability to function on	2	Software project as described	As explained above
multidisciplinary teams		above involving 2-3 members	
e. An ability to identify, formulate	2	The problems and project require	Homework, exams, design
and solve engineering problems		students to identify, formulate and	project
		solve engineering problems.	
f. An understanding of professional	1	Need to design buildings and HVAC a	Lecture; Final report for the
and ethical responsibility		energy efficiently as possible	design project
g. An ability to communicate	2	Written presentation of the final	Final report for the design
effectively		design problem is required.	project
h. The broad education necessary	1	The impact of engineering design on	Presentation on energy
to understand the impact		building energy use and	problem and how energy
of engineering solutions		environment (pollution, greenhouse	conservation can help;
in a global/societal context		effect, etc.) was highlighted.	Final report for the design
			project
i. A recognition of the need for and ar	1	Stressed the fact that professional	Lectures, assignments
ability to engage in lifelong learning		practice keeps changing with time	
		and need to keep abreast; specific	
		instances highlighted during course	
j. A knowledge of contemporary	1	Energy issue and how good building	Lecture
issues		and HVAC design can help alleviate	
		the problem	
k. An ability to use the techniques,	1	Computer packages are used to	Final report for the design
skills and modern engineering tools		explore the solution domain for	project
necessary for engineering practice		homework and the design project	

Prepared by:

Dr. T. Agami Reddy, 16 November 2006