Mechanical Engineering and Mechanics

MEM 361 Engineering Reliability

Fall 2006

Designation: Required

Course Description: Reviews probability concepts and modeling of random phenomena, including parameter estimation, empirical determination of distribution models, materials strength and fatigue life of distribution, and reliability improvement.

Prerequisites: Senior/Junior Status

Textbook and other required material:

Basic Reliability: An Introduction to Reliability Engineering, Nicholas Summerville, AuthorHouse, 2004 and Lecture Notes (will be given out as handouts)

Course Objectives:

- 1. Identify failure causes for mechanical components and systems, software, and processes.
- 2. Determine the probable life of machines and products, planning of periodic maintenance, inventory of spare parts and the evaluation of quality of products.
- 3. Analysis failure data for component and system reliability and availability.
- 4. Perform reliability probability plotting for binomial data.
- 5. State the role of the reliability engineer as a member of a product design team.
- 6. Determine the effects of reliability engineering on the design process.
- 7. Perform a Failure Modes, Effects and Criticality Analysis (FMECA).
- 8. Determine the allocation of reliability specifications.

Topics:

- 1. Engineering Reliability
- 2. Elements in Quality Control; Reliability Improvement
- 3. Elements in Reliability; Reliability Theory
- 4. Elements in Reliability; Probability and Statistics
- 5. Project Topic Presentation and Mid-Term Review
- 6. Failure Rate Function and Reliability Models
- 7. Reliability Testing
- 8. Design for Reliability
- 9. Failure Mode, Effect and Criticality Analysis (FMECA)
- 10. Reliability Allocation

Class Schedule: 3 hours/week lecture (3 credits)

Contribution to Professional Component:

MEM 361 contributes to the core technical skills of Mechanical Engineering Students. This course provides students with foundation knowledge in the areas of reliability in design, reliability predictions and modeling, the analysis of reliability data for mechanical components and systems, electronic systems, software, and processes. Prepares students for classes in product design, materials, and life-cycle support.

RELATION TO PROGRAM OUTCOMES:

Outcomes a - k	Cont	Explanation	Evidence
a. An ability to apply knowledge	2	This course requires the students to	Homework, Exams,
of mathematics, science		develop a general understanding of	Design Project
and engineering		applications of probability by	
		applying their knowledge of	
		mathematics, science, and	
		engineering.	
 An ability to design and conduct 	1	A demonstration of real life data to	Final report for the design
experiments as well as		educate the students to learn the	project; Classroom
to analyze and interpret data		notion of reliability, and how real life	example and homework
		is not a text-book case.	problems
 c. An ability to design a system, 	1	The assigned design problems are	Final report for the design
component or process to meet		always required to meet societal or	project
desired needs		industrial needs.	
 An ability to function on 	1	The course emphasizes the	Classroom work,
multidisciplinary teams		requirement for multidisciplinary	homework problems and
		teams to determine failure modes	final report for the design
		and their effects and the in the	project
		selection of reliability improvement	
		methods	
e. An ability to identify, formulate	2	The problems and project require	Homework, exams, design
and solve engineering problems		students to identify, formulate and	project
		solve engineering problems.	
f. An understanding of professional	2	This is emphasized as part of the	Discussions in class
and ethical responsibility		Engineer's overall responsibility.	
g. An ability to communicate	1	Written presentation of the final	Final report for the design
effectively		design problem is required.	project
h. The broad education necessary	2	The impact of engineering design on	Classroom discussion of
to understand the impact		the environment (pollution,	environmental issues; Final
of engineering solutions		greenhouse effect, etc.) and society	report for the design project
in a global/societal context		are covered.	
i. A recognition of the need for and	1	Students are taught to understand	Class room discussions
an ability to engage in lifelong learning		that situations change.	and notes.
j. A knowledge of contemporary	1	The course covers new tools	Classroom discussions,
issues		technique used in reliability	demonstrations and
		engineering	
k. An ability to use the techniques,	1	Computer packages are used to	Homework; Final report for
skills and modern engineering tools		explore the solution domain for	the design project
necessary for engineering practice		homework and the design project	