Mechanical Engineering and Mechanics

MEM 255 Introduction to Controls

Fall 2006/Spring 2007

Designation: Required

Catalog Description: Reviews basic mechanical systems, Laplace Transforms, Linear Algebra,

and state-space representations; introduces modeling of multi DOF mechanical and electrical systems, poles and zeros, sytam response and characterization, stability analysis, Routh-Hurwitz technique, Bode plots,

Nyquist plots, and controllability and observability of systems.

Prerequisites: Systems I (tDec 221), and Systems II (tDec 222)

Textbook(s) and other required material:

Required: Feedback Control of Dynamic Systems, G.F.Franklin, J.D.Powell, and

A.Emami-Naeini, 5th edition, Prentice Hall, ISBN 0-13-149930-0

MatLab Software

Course Objectives:

1. Generate dynamic models for mechanical and electrical systems using Mewton's law and loop and node laws.

- 2. Determine and characterize the systems' responses using both time and Laplace domains.
- 3. Dtermine the stability, and range of parameters to ensure it, using Routh-Hurwitz technique.
- 4. Use Bode plots and Nyquist plots to analyze the system response.
- 5. Evaluate the controllability and observability of systems.

Topics:

- 1. Laplace Transforms and state-space representations
- 2. Modeling of mechanical systems
- 3. Modeling of electrical systems
- 4. System response and characterization
- 5. Stability and Routh-Hurwitz technique
- 6. Bode and Nyquist plots
- 7. Controllability and Observability

Class Schedule: 3 hours/week lecture (3 credits); 2 hours of recitation/ week (1 credit)

Contribution to Professional Component:

Contributes toward the $1\frac{1}{2}$ year of engineering topics appropriate to developing the ability to work in the area of modeling and control of dynamic systems. Prepares students for follow-up courses in control design.

Relationship to Program Outcomes:

Outcomes a - k	Content		Evidence
a. An ability to apply knowledge	2	This course requires the students to	Homework, Exams,
of mathematics, science		develop a general understanding of	Design Project
and engineering		dynamics of systems, and the need	
		for control. The students learn how	
		to apply and synthesize their	
		knowledge of mathematics,	
		science, and engineering.	
b. An ability to design and conduct	1	The course requires the students to	Home work problems
experiments as well as		interpret experimental data in the	
to analyze and interpret data		form of mathematical models of	
		systems.	
c. An ability to design a system,	2	The assigned home work problems	Final report for the design
component or process to meet		and exams force the students to	project, and home works
desired needs		design specified controllers .	
d. An ability to function on	1	Second exam and the final project	Final report, and second
multidisciplinary teams	_	require team work	exam.
e. An ability to identify, formulate	1	The problems and project require	Homework, exams, design
and solve engineering problems		students to solve engineering problems.	project
f An understanding of professional	0	N/A	N/A
f. An understanding of professional	U	N/A	IN/A
and ethical responsibility g. An ability to communicate	1	Written presentation of the final	Final report for the design
effectively	•	design problem is required.	project
h. The broad education necessary	0	N/A	N/A
to understand the impact	Ū	14// (14/7
of engineering solutions			
in a global/societal context			
i. A recognition of the need for and ar	0	NA	
ability to engage in lifelong learning	-		
j. A knowledge of contemporary	0	NA	
issues			
k. An ability to use the techniques,	2	Software package (MatLab) is	Homework; Final report for
skills and modern engineering tools		required for homework and the final	the design project
necessary for engineering practice		project	

Prepared by: Dr. Ajmal Yousuff, 15 November 2006