BUILDING SYSTEM STANDARDS AND DESIGN GUIDE

Version 6.0
November 2015

General
Division 01 – General Requirements
Division 02 – Existing Conditions
Division 05 – Metals
Division 07 – Thermal and Moisture Protection
Division 08 – Openings
Division 09 – Finishes
Division 10 – Specialties
Division 11 – Equipment
Division 14 – Conveying Equipment
Division 21 – Fire Suppression
Division 22 – Plumbing
Division 23 – Heating, Ventilating, and Air Conditioning
Division 25 – Integrated Automation
Division 26 – Electrical
Division 27 – Communications
Division 28 – Electronic Safety and Security
Division 32 – Exterior Improvements
Division 33 – Utilities
Division 41 – Material Processing and Handling Equipment
Appendix A – Laboratory Design Standards 2013
Appendix B – Telecommunications and Data System Components

This document is available online at http://www.drexel.edu/facilities/design/standards/
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section Number and Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>B. Definitions</td>
<td>2</td>
</tr>
<tr>
<td>C. Processing of Work – Prime Professional</td>
<td>3</td>
</tr>
<tr>
<td>D. Processing of Work – Prime Contractor</td>
<td>4</td>
</tr>
<tr>
<td>E. Drawings and Specifications Format</td>
<td>5</td>
</tr>
<tr>
<td>F. Submission Requirements</td>
<td>6</td>
</tr>
<tr>
<td>G. The Drexel Green Initiative</td>
<td>9</td>
</tr>
<tr>
<td>H. Conservation of Energy</td>
<td>9</td>
</tr>
<tr>
<td>I. Construction Waste Management and Disposal</td>
<td>13</td>
</tr>
<tr>
<td>J. Noise and Vibration Control</td>
<td>16</td>
</tr>
<tr>
<td>K. Temperature Control Requirements</td>
<td>18</td>
</tr>
<tr>
<td>L. Utilities</td>
<td>19</td>
</tr>
<tr>
<td>M. Abandoned Equipment and Materials</td>
<td>21</td>
</tr>
<tr>
<td>N. General Considerations – Prime Professional</td>
<td>21</td>
</tr>
<tr>
<td>O. General Considerations – Prime Contractor</td>
<td>25</td>
</tr>
<tr>
<td>P. Design Build Projects</td>
<td>30</td>
</tr>
<tr>
<td>Q. Pre-Purchased Equipment</td>
<td>30</td>
</tr>
<tr>
<td>II. DIVISION 01 – GENERAL REQUIREMENTS</td>
<td>34</td>
</tr>
<tr>
<td>01 24 13 Value Engineering</td>
<td>34</td>
</tr>
<tr>
<td>01 35 00 Special Procedures</td>
<td>34</td>
</tr>
<tr>
<td>01 45 33 Code-Required Special Inspections and Procedures</td>
<td>34</td>
</tr>
<tr>
<td>01 79 00 Demonstration and Training</td>
<td>34</td>
</tr>
<tr>
<td>01 91 00 Commissioning</td>
<td>35</td>
</tr>
<tr>
<td>III. DIVISION 02 – EXISTING CONDITIONS</td>
<td>39</td>
</tr>
<tr>
<td>02 24 00 Environmental Assessment</td>
<td>39</td>
</tr>
<tr>
<td>IV. DIVISION 05 – METALS</td>
<td>42</td>
</tr>
<tr>
<td>05 12 00 Structural Steel Framing</td>
<td>42</td>
</tr>
<tr>
<td>05 51 33 Metal Ladders</td>
<td>42</td>
</tr>
<tr>
<td>05 52 13 Pipe and Tube Railings</td>
<td>42</td>
</tr>
<tr>
<td>V. DIVISION 07 – THERMAL AND MOISTURE PROTECTION</td>
<td>43</td>
</tr>
<tr>
<td>07 26 00 Vapor Retarders</td>
<td>43</td>
</tr>
<tr>
<td>07 55 54 Thermoplastic Protected Membrane Roofing</td>
<td>43</td>
</tr>
<tr>
<td>07 71 00 Roof Specialties</td>
<td>43</td>
</tr>
<tr>
<td>07 72 13 Manufactured Curbs</td>
<td>43</td>
</tr>
<tr>
<td>07 84 00 Firestopping</td>
<td>43</td>
</tr>
<tr>
<td>VI. DIVISION 08 – OPENINGS</td>
<td>45</td>
</tr>
<tr>
<td>08 71 00.1 Door Hardware – Academic, Maintenance and Business Facilities ONLY</td>
<td>45</td>
</tr>
<tr>
<td>08 71 00.2 Door Hardware – Housing (Fraternities and Dorms) ONLY</td>
<td>53</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section Number and Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII. DIVISION 09 – FINISHES</td>
<td>58</td>
</tr>
<tr>
<td>09 51 00 Acoustical Ceilings</td>
<td>58</td>
</tr>
<tr>
<td>09 62 00 Specialty Flooring</td>
<td>58</td>
</tr>
<tr>
<td>09 68 13 Carpet Tile</td>
<td>58</td>
</tr>
<tr>
<td>09 91 00 Painting</td>
<td>59</td>
</tr>
<tr>
<td>VIII. DIVISION 10 – SPECIALTIES</td>
<td>60</td>
</tr>
<tr>
<td>10 28 00 Toilet, Bath and Laundry Accessories</td>
<td>60</td>
</tr>
<tr>
<td>10 44 16 Fire Extinguishers</td>
<td>60</td>
</tr>
<tr>
<td>IX. DIVISION 11 – EQUIPMENT</td>
<td>61</td>
</tr>
<tr>
<td>11 53 00 Laboratory Equipment</td>
<td>61</td>
</tr>
<tr>
<td>11 53 13 Laboratory Fume Hoods</td>
<td>61</td>
</tr>
<tr>
<td>X. DIVISION 14 – CONVEYING EQUIPMENT</td>
<td>62</td>
</tr>
<tr>
<td>14 08 20 Commissioning of Elevators</td>
<td>62</td>
</tr>
<tr>
<td>14 20 00 Elevators</td>
<td>64</td>
</tr>
<tr>
<td>XI. DIVISION 21 – FIRE SUPPRESSION</td>
<td>66</td>
</tr>
<tr>
<td>21 00 00 Fire Suppression</td>
<td>66</td>
</tr>
<tr>
<td>21 05 53 Identification for Fire Suppression Piping and Equipment</td>
<td>68</td>
</tr>
<tr>
<td>21 08 00 Commissioning of Fire Suppression</td>
<td>68</td>
</tr>
<tr>
<td>21 10 00 Water-Based Fire-Suppression Systems</td>
<td>71</td>
</tr>
<tr>
<td>21 31 13 Electric Driven, Centrifugal Fire Pumps</td>
<td>72</td>
</tr>
<tr>
<td>XII. DIVISION 22 – PLUMBING</td>
<td>76</td>
</tr>
<tr>
<td>22 05 00 Common Work Results for Plumbing</td>
<td>76</td>
</tr>
<tr>
<td>22 05 13 Common Motor Requirements for Plumbing Equipment</td>
<td>77</td>
</tr>
<tr>
<td>22 05 19 Meters and Gages for Plumbing Piping</td>
<td>78</td>
</tr>
<tr>
<td>22 05 29 Hangers and Supports for Plumbing Piping and Equipment</td>
<td>79</td>
</tr>
<tr>
<td>22 05 53 Identification for Plumbing Piping and Equipment</td>
<td>80</td>
</tr>
<tr>
<td>22 07 19 Plumbing Piping Insulation</td>
<td>80</td>
</tr>
<tr>
<td>22 08 00 Commissioning of Plumbing</td>
<td>83</td>
</tr>
<tr>
<td>22 11 16 Domestic Water Piping</td>
<td>85</td>
</tr>
<tr>
<td>22 11 19 Domestic Water Piping Specialties</td>
<td>85</td>
</tr>
<tr>
<td>22 13 16 Sanitary Waste and Vent Piping</td>
<td>86</td>
</tr>
<tr>
<td>22 15 19 General Service Packaged Air Compressors and Receivers</td>
<td>86</td>
</tr>
<tr>
<td>22 33 00 Electric Domestic Water Heaters</td>
<td>87</td>
</tr>
<tr>
<td>22 34 00 Fuel-Fired Domestic Water Heaters</td>
<td>87</td>
</tr>
<tr>
<td>22 42 00 Commercial Plumbing Fixtures</td>
<td>88</td>
</tr>
<tr>
<td>22 45 00 Emergency Plumbing Fixtures</td>
<td>90</td>
</tr>
<tr>
<td>22 47 00 Drinking Fountains and Water Coolers</td>
<td>90</td>
</tr>
<tr>
<td>22 61 00 Compressed-Air Systems for Laboratory and Healthcare Facilities</td>
<td>90</td>
</tr>
<tr>
<td>22 62 00 Vacuum Systems for Laboratory and Healthcare Facilities</td>
<td>91</td>
</tr>
<tr>
<td>22 63 00 Gas Systems for Laboratory and Healthcare Facilities</td>
<td>91</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

Section Number and Title

<table>
<thead>
<tr>
<th>Section Number</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>XIII.</td>
<td>DIVISION 23 – HEATING, VENTILATING, AND AIR-CONDITIONING</td>
<td>93</td>
</tr>
<tr>
<td>23 01 30.51</td>
<td>HVAC Air Distribution System Cleaning</td>
<td>96</td>
</tr>
<tr>
<td>23 05 00</td>
<td>Common Work Results for HVAC</td>
<td>96</td>
</tr>
<tr>
<td>23 05 13</td>
<td>Common Motor Requirements for HVAC Equipment</td>
<td>98</td>
</tr>
<tr>
<td>23 05 16</td>
<td>Expansion Fittings and Loops for HVAC Piping</td>
<td>99</td>
</tr>
<tr>
<td>23 05 19</td>
<td>Meters and Gages for HVAC Piping</td>
<td>100</td>
</tr>
<tr>
<td>23 05 29</td>
<td>Hangers and Supports for HVAC Piping and Equipment</td>
<td>101</td>
</tr>
<tr>
<td>23 05 33</td>
<td>Heat Tracing for HVAC Piping</td>
<td>102</td>
</tr>
<tr>
<td>23 05 53</td>
<td>Identification for HVAC Piping and Equipment</td>
<td>103</td>
</tr>
<tr>
<td>23 05 93</td>
<td>Testing, Adjusting, and Balancing for HVAC</td>
<td>103</td>
</tr>
<tr>
<td>23 07 13</td>
<td>Duct Insulation</td>
<td>104</td>
</tr>
<tr>
<td>23 07 16</td>
<td>HVAC Equipment Insulation</td>
<td>106</td>
</tr>
<tr>
<td>23 07 19</td>
<td>HVAC Piping Insulation</td>
<td>106</td>
</tr>
<tr>
<td>23 08 00</td>
<td>Commissioning of HVAC</td>
<td>108</td>
</tr>
<tr>
<td>23 11 23</td>
<td>Facility Natural Gas Piping</td>
<td>111</td>
</tr>
<tr>
<td>23 21 13</td>
<td>Hydronic Piping</td>
<td>112</td>
</tr>
<tr>
<td>23 21 16</td>
<td>Hydronic Piping Specialties</td>
<td>118</td>
</tr>
<tr>
<td>23 21 23</td>
<td>Hydronic Pumps</td>
<td>120</td>
</tr>
<tr>
<td>23 22 13</td>
<td>Steam and Condensate Heating Piping</td>
<td>121</td>
</tr>
<tr>
<td>23 22 16</td>
<td>Steam and Condensate Heating Piping Specialties</td>
<td>127</td>
</tr>
<tr>
<td>23 23 00</td>
<td>Refrigeration Piping</td>
<td>129</td>
</tr>
<tr>
<td>23 23 23</td>
<td>Refrigerants</td>
<td>129</td>
</tr>
<tr>
<td>23 25 00</td>
<td>HVAC Water Treatment</td>
<td>130</td>
</tr>
<tr>
<td>23 31 00</td>
<td>HVAC Ducts and Casings</td>
<td>131</td>
</tr>
<tr>
<td>23 33 00</td>
<td>Air Duct Accessories</td>
<td>135</td>
</tr>
<tr>
<td>23 33 19</td>
<td>Duct Silencers</td>
<td>136</td>
</tr>
<tr>
<td>23 34 13</td>
<td>Axial HVAC Fans</td>
<td>137</td>
</tr>
<tr>
<td>23 34 16</td>
<td>Centrifugal HVAC Fans</td>
<td>137</td>
</tr>
<tr>
<td>23 36 00</td>
<td>Air Terminal Units</td>
<td>138</td>
</tr>
<tr>
<td>23 36 00.1</td>
<td>Fume Hood and Laboratory Fume Hood Controls</td>
<td>139</td>
</tr>
<tr>
<td>23 36 00.2</td>
<td>Air Quality Monitoring System</td>
<td>140</td>
</tr>
<tr>
<td>23 37 13</td>
<td>Diffusers, Registers and Grilles</td>
<td>141</td>
</tr>
<tr>
<td>23 38 13</td>
<td>Commercial-Kitchen Hoods</td>
<td>142</td>
</tr>
<tr>
<td>23 38 16</td>
<td>Fume Hoods</td>
<td>143</td>
</tr>
<tr>
<td>23 41 00</td>
<td>Particulate Air Filtration</td>
<td>144</td>
</tr>
<tr>
<td>23 52 00</td>
<td>Heating Boilers</td>
<td>145</td>
</tr>
<tr>
<td>23 57 00</td>
<td>Heat Exchangers for HVAC</td>
<td>146</td>
</tr>
<tr>
<td>23 63 13</td>
<td>Air-Cooled Refrigerant Condensers</td>
<td>146</td>
</tr>
<tr>
<td>23 64 16</td>
<td>Centrifugal Water Chillers</td>
<td>147</td>
</tr>
<tr>
<td>23 65 00</td>
<td>Cooling Towers</td>
<td>148</td>
</tr>
<tr>
<td>23 70 00</td>
<td>Central HVAC Equipment</td>
<td>149</td>
</tr>
<tr>
<td>23 81 23</td>
<td>Computer-Room Air-Conditioners</td>
<td>151</td>
</tr>
<tr>
<td>23 81 26</td>
<td>Split-System Air-Conditioners</td>
<td>151</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section Number and Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 81 46 Water-Source Unitary Heat Pumps</td>
<td>152</td>
</tr>
<tr>
<td>23 82 14 Chilled Beams</td>
<td>153</td>
</tr>
<tr>
<td>23 82 16 Air Coils</td>
<td>155</td>
</tr>
<tr>
<td>23 82 19 Fan Coil Units</td>
<td>157</td>
</tr>
<tr>
<td>23 82 36 Finned-Tube Radiation Heaters</td>
<td>157</td>
</tr>
<tr>
<td>23 82 39 Unit Heaters</td>
<td>157</td>
</tr>
<tr>
<td>23 84 13 Humidifiers</td>
<td>158</td>
</tr>
<tr>
<td>XIV. DIVISION 25 – INTEGRATED AUTOMATION</td>
<td></td>
</tr>
<tr>
<td>25 00 00 Integrated Automation</td>
<td>161</td>
</tr>
<tr>
<td>25 08 00 Commissioning of Integrated Automation</td>
<td>162</td>
</tr>
<tr>
<td>25 12 00 Integrated Automation Network</td>
<td>163</td>
</tr>
<tr>
<td>25 35 00 Integrated Automation Instrumentation and Terminal Devices for HVAC</td>
<td>167</td>
</tr>
<tr>
<td>25 50 00 Integrated Automation Facility Controls</td>
<td>171</td>
</tr>
<tr>
<td>XV. DIVISION 26 – ELECTRICAL</td>
<td></td>
</tr>
<tr>
<td>26 05 00 Common Work Results for Electrical</td>
<td>176</td>
</tr>
<tr>
<td>26 05 53 Identification for Electrical Systems</td>
<td>180</td>
</tr>
<tr>
<td>26 08 00 Commissioning of Electrical Systems</td>
<td>180</td>
</tr>
<tr>
<td>26 09 23 Lighting Control Devices</td>
<td>184</td>
</tr>
<tr>
<td>26 10 00 Medium-Voltage Electrical Distribution</td>
<td>185</td>
</tr>
<tr>
<td>26 32 13 Engine Generators</td>
<td>187</td>
</tr>
<tr>
<td>26 41 00 Facility Lightning Protection</td>
<td>188</td>
</tr>
<tr>
<td>26 51 00 Interior Lighting</td>
<td>189</td>
</tr>
<tr>
<td>26 51 13 Interior Lighting Fixtures, Lamps, and Ballasts</td>
<td>189</td>
</tr>
<tr>
<td>26 53 00 Exit Signs</td>
<td>190</td>
</tr>
<tr>
<td>26 56 00 Exterior Lighting</td>
<td>190</td>
</tr>
<tr>
<td>XVI. DIVISION 27 – COMMUNICATIONS</td>
<td></td>
</tr>
<tr>
<td>27 05 28 Pathways for Communication Systems</td>
<td>192</td>
</tr>
<tr>
<td>27 40 00 Audio-Video Communications</td>
<td>194</td>
</tr>
<tr>
<td>XVII. DIVISION 28 – ELECTRONIC SAFETY AND SECURITY</td>
<td></td>
</tr>
<tr>
<td>28 10 00 Electronic Access Control and Intrusion Detection</td>
<td>196</td>
</tr>
<tr>
<td>28 31 00 Fire Detection and Alarm</td>
<td>199</td>
</tr>
<tr>
<td>XVIII. DIVISION 32 – EXTERIOR IMPROVEMENTS</td>
<td></td>
</tr>
<tr>
<td>32 84 00 Planting Irrigation</td>
<td>201</td>
</tr>
<tr>
<td>XIX. DIVISION 33 – UTILITIES</td>
<td></td>
</tr>
<tr>
<td>33 05 00 Common Work Results for Utilities</td>
<td>202</td>
</tr>
<tr>
<td>XX. DIVISION 41 – MATERIAL PROCESSING AND HANDLING EQUIPMENT</td>
<td></td>
</tr>
<tr>
<td>41 22 00 Cranes and Hoists</td>
<td>203</td>
</tr>
<tr>
<td>XXI. APPENDIX A</td>
<td></td>
</tr>
<tr>
<td>Laboratory Design Standard 2013</td>
<td>A</td>
</tr>
<tr>
<td>XXII. APPENDIX B</td>
<td></td>
</tr>
<tr>
<td>Telecommunication and Data System Components</td>
<td>B</td>
</tr>
</tbody>
</table>
I. GENERAL

A. Introduction

This Building System Standards and Design Guide (hereinafter referred to as the Guide) has been prepared to familiarize the Architects and Engineers (A/E) retained by Drexel University with the (1) present sources of energy available for use on campus, (2) utility operating characteristics, (3) standard University design requirements and procedures, and (4) prohibited or preferred systems and materials.

The Guide serves to consolidate the extent of institutional knowledge retained by the Staff of University Planning, Design & Construction and Facilities Departments. It is intended to be updated bi-annually, although more current individual sections or supplements may be distributed or posted on an as-needed basis. Items in blue text represent these bi-annual updates. In addition, an Adobe PDF version of the document is available on the Design and Construction section of Drexel University Facilities Department Web Page at http://www.drexel.edu/facilities/design/standards/.

Nothing within this Guide shall be construed as limiting the design innovation of the A/E. The University recognizes the need to maintain design flexibility, to assure a systematic design process that results in completed projects which are functional, energy efficient, code compliant and congruent with the intent of the project program.

The University, through its design review procedures, comments and recommendations, does not release or alleviate the A/E from his/her responsibility and legal liability relating to equipment, materials, code compliance, serviceability of systems, capacity, Guide compliance, budget, site observation of the work in progress, system operation, shop drawing review, contract document interpretation, schedule, errors, omissions and/or all other non-delegable duties and obligations as a Professional.

It is the duty of the Prime Professional, as well as all Consultants, Sub-Consultants, etc. to ascertain that the entire Mechanical, Plumbing, Fire Protection and Electrical Systems can be installed, maintained, serviced and replaced without the removal, relocation or disturbance of unrelated systems or building structure, or impact any part of the building structure for the entrance and exit of equipment.

Furthermore, it is the duty of the Prime Professional to directly contact the University’s Project Manager for related project program requirements, design conditions and/or existing conditions, which will render the above requirements unattainable or impractical. All communication to the University shall be made through the Project Manager. All communication from the University shall be made through the Project Manager, who will relay the information to the Prime Professional.

All codes listed in this version of the Guide shall be superseded as required to meet the latest applicable codes as approved by the City of Philadelphia Licenses and Inspections. It is the Prime Professional’s and Contractor’s responsibility to confirm which version is approved and comply with all City of Philadelphia applicable codes.
The University is the sole entity with the authority to waive the requirements of this Guide and it only exercises such authority through the execution of proper procedures in the submission of documents as detailed herein.

The Prime Professional and/or Contractor shall submit in writing all questions concerning this Guide to the University’s Project Manager. The Project Manager shall refer the questions to all affected University offices for clarification or modification. However, no modifications to the Guide will be made without the express written approval of the Director of Planning, Design and Construction, or a duly appointed designee.

B. Definitions

The University or University: Drexel University.

University’s Project Manager: A designated University Employee and/or Project Manager who shall function as an interpreter of this document and the focal point for the transfer of all information between the various Departments within the University and the A/E. Additionally, the Project Manager shall ascertain that the University’s interests and program are being properly served as the project progresses.

User: Any of the various Departments within the University who will receive beneficial use of the completed project and who have a vested interest in its timely and successful completion.

User’s Representative(s): Designated employee(s) or consultant(s) of the University who shall function as the focal point for the transfer of information between the University’s Project Manager and affected or interested Departments. User’s Representatives generally include the occupants of the space being built or renovated and members of the Facilities Management Department, who are responsible for the maintenance of the equipment. Also involved may be representatives from the Safety and Security Departments.

A/E: Architect/Engineering Team consisting of the Prime Professional and all Consultants and Sub-Consultants engaged to provide services on particular project.

Prime Professional: The A/E of record with whom the University enters into a formal agreement for design services.

Consultants, Sub-Consultants: Professionals and/or other firms with specialized experience engaged by the Prime Professional, or a third party engaged by a firm under contract with the Prime Professional, i.e. Commissioning Authority.

Prime Contractors: Construction professionals with specialized experience with whom the University enters into a formal agreement for construction services.

Sub-Contractors: Construction professional with specialized experience engaged by the Prime Contractor, or a third party engaged by a contractor under contract with the Prime Contractor.
C. Processing of Work – Prime Professional

1. The programming, design and construction of facilities are a cooperative procedure involving many persons within the University. The A/E, as an agent of the University, is required to work with the University’s Project Manager and to call upon him/her for authoritative answers on all matters.

2. The University, in conjunction with a User Group, generally prepares a program listing the Project requirements, goals and objectives. This Guide supplements the requirements set by the program, and is an integral part of this program. The program cannot be altered in any way by the A/E without the written consent of the University’s Project Manager. Changes will not be addressed which are based solely upon the request of a User.

3. Immediately after the selection of and approval of the A/E, the University’s Project Manager will schedule a Kick-Off Meeting, for the purpose of discussing the general requirements of the program, the schedule of the work, responsibility for keeping minutes and submitting drawings, specifications, materials, memos or letters, contacts protocol and emergency lists, etc. It is mandatory that the complete A/E Team and the User's Representatives attend the Kick-Off Meeting.

4. Submissions of design documents are required at various stages. The University’s Project Manager, upon receipt and distribution of the documents, will schedule a review meeting between the Prime Professional, appropriate A/E Team members and the Users’ Representatives. Upon satisfactory completion, review and approval of a particular design stage, the Project Manager will notify the A/E to proceed with the next stage of project design and documentation.

5. It is the responsibility of the A/E to confirm all that all approved manufacturers listed in the specifications for products, equipment and accessories are indeed equivalent to the Basis of Design listed in the schedules on the drawings. Any discrepancies are to be brought to the University Project Manager.

6. Generally, the A/E will be required to submit design documents at each of the following progress stages:
 a) Schematic Design.
 b) Design Development.
 c) Construction Documents.

7. Submissions of these progress documents shall be made to the University’s Project Manager for distribution to the various in-house Departments responsible for the review of the documents. The quantity of documents and distribution of such will be determined during the Kick-Off Meeting.
 a) After an initial in-house review period, the University’s Project Manager will schedule a Joint Review Meeting. Attendance by the A/E Team is mandatory. During this meeting, the Prime Professional of record for each discipline will present his/her portion of the project
and address questions from the University.

b) The Prime Professional will record all questions in the minutes of the Joint Review Meeting, with appropriate responses and any resolution or action taken at the meeting. If any issues cannot be resolved during the Joint Review Meeting, they will be so noted in an “Action” section of the minutes, and a schedule for response or action duly noted. If some of the agreed upon resolutions conflict with the Program of Requirements or this Guide, the Prime Professional will highlight them for the record.

c) Work beyond the specific design review stage will not take place until all comments have been addressed to the satisfaction of the University, at which time notice to proceed with further documentation will be issued by the University’s Project Manager.

d) Within seven (7) working days of any Meeting, a memorandum containing a complete summation of the meeting shall be prepared by the Prime Professional, and distributed to all those in attendance. Meeting memoranda shall be numbered in consecutive order and include the University's project identification number as well as the Prime Professional's project number. The summation of events will be in outline form, with numbered paragraphs.

8. Division 01 information described in this Guide is to be reviewed by the A/E with revisions made to the A/E specifications as required. It is not intended to be a complete replacement of a Division 01 specification.

D. Processing of Work – Prime Contractor

1. The construction of facilities is a cooperative procedure involving many persons within the University. The Lead Contractor is required to work with the University’s Project Manager and to call upon him/her for authoritative answers on all matters.

2. Immediately after the selection of and approval of the Contractor, the University’s Project Manager will schedule a Kick-Off Meeting, for the purpose of discussing the general requirements of the construction, the schedule of the work, responsibility for keeping minutes and submitting shop drawings, submittals, materials, memos or letters, contacts protocol and emergency lists, etc. It is mandatory that the complete Contractor Team Representatives attend the Kick-Off Meeting.

3. Submissions of shop drawings and submittals shall be made to the University’s Project Manager for distribution to the various in-house Departments responsible for the review of the documents.

4. The Prime Contractor will provide a copy of all acquired permits to the University Project Manager.

5. The quantity of documents and distribution of such will be determined during the Kick-Off Meeting.
 a) The Prime Contractor will record all questions in the minutes of the Construction Meeting, with appropriate responses and any resolution or action taken at the meeting. If any issues cannot be resolved during the Construction Meeting, they will be so noted in an “Action”
section of the minutes, and a schedule for response or action duly noted. If some of the agreed upon resolutions conflict with the Construction Requirements or this Guide, the Prime Contractor will highlight them for the record.

b) Work beyond the specific construction documents will not take place until all comments and associated costs have been addressed to the satisfaction of the University, at which time notice to proceed with further construction will be issued by the University’s Project Manager.

c) Within seven (7) working days of any Meeting, a memorandum containing a complete summation of the meeting shall be prepared by the Prime Contractor, and distributed to all those in attendance. Meeting memoranda shall be numbered in consecutive order and include the University's project identification number as well as the Prime Contractor’s project number. The summation of events will be in outline form, with numbered paragraphs.

E. Drawings and Specifications Format

1. This section will provide the requirements for documentation for archiving all University Project Documents.

2. University Drawing Format is as follows:

 a) Drawings: AutoCAD 2016, on individual (24x36) or (30x42) sheets for each discipline with, at a minimum, the following document identification:
 (1) Project Title.
 (2) Drawing Title.
 (3) Project Location, including Building Address, Building Number and BRT Building Address (OPA).
 (4) Name, Address and Telephone Number of A/E Firms.
 (5) Document Submission Date.
 (6) Revision Dates.
 (7) Drawing Scale.
 (8) North Arrow, showing true North.
 (9) Key Plan.

 b) Drawings will be labeled as per A/E’s standard. If A/E does not have a standard or University creates the drawing(s), labeling as follows:
 (1) Civil: C-1, C-2, etc.
 (2) Architectural: A-1, A-2, etc.
 (3) Structural: S-1, S-2, etc.
 (4) Heating, Ventilating and Air Conditioning: M-1, M-2, etc.
 (5) Instrumentation: I-1, I-2, etc.
 (6) Electrical: E-1, E-2, etc.
 (7) Fire Alarm: FA-1, FA-2, etc.
 (8) Telecommunication: T-1, T-2, etc.
 (9) Plumbing and Drainage: P-1, P-2, etc.
 (10) Fire Protection: FP-1, FP-2, etc.

 c) Separate drawings are to be used for coversheets, plans, details, schedules, and piping, airflow, BAS, and wiring diagrams. Consolidating on smaller projects is acceptable.
d) Symbols and abbreviations must be edited per project. The following type of note “SOME SYMBOLS AND ABBREVIATIONS MAY NOT APPLY” is not acceptable.

e) All equipment rooms shall be drawn at scale not less than 1/4" = 1'-0" with all equipment and double-line ductwork, piping (2 inch and larger), and conduit (2 inch and larger).

f) All equipment is to be individually scheduled per discipline.

3. University Specification Format is as follows:
 b) Each specification is to have a maximum of five (5) approved manufacturers, except where proprietary manufacturers are noted in this Guide.
 c) Specifications must be edited per project. The specifications in this Guide are to be used as a basis and the specifications tailored to the project, the Guide shall not be included in the Contract Documents by reference only.

4. Adobe PDF Deliverables:
 a) Drawings: One (1) consolidated file per discipline bookmarked and layered for CAD export.
 b) Specifications: One (1) consolidated file per volume bookmarked per specification section and named informatively.

5. Prior to Project Closeout, a CD containing the Project’s Construction Documents in Adobe Acrobat PDF and AutoCAD 2016 format shall be provided to the Project Manager. The drawings shall incorporate all revisions, sketches, bulletins, RFI’s and addenda issued during the Bidding and Construction Phases. Specifications shall also be included on the CD in Adobe Acrobat format.

6. Upon Project Completion the Prime Contractor, along with Sub-Contractors, shall produce As-Built documentation in Adobe Acrobat PDF format of work in place of respective systems. Submission requirements may be found in individual Specification sections of the Contract Documents. At a minimum, all systems listed in Specification shall be submitted by the Prime Contractor.

F. Submission Requirements

1. General:
 a) Each progress submission shall be covered with a standard transmittal form in which the A/E certifies compliance with the University’s Program Requirements and this Guide unless a waiver request form has previously been issued and approved, in which case a copy of the approved and fully executed waiver request must be included in the submission.
 b) In the event that a Program or Guide requirement cannot be reasonably met, for any item not previously agreed to at a Joint Review Meeting, a waiver request form must be executed by the Professional of Record for the particular discipline, endorsed by the Prime Professional and forwarded to the University’s Project Manager for in-house review and approval. Submission of a waiver request form does not constitute acceptance. A formal written response to the waiver must be issued, and an appropriate action indicated on the waiver...
form. If necessary, a review meeting may be scheduled to address the waiver request. The University’s Project Manager will coordinate the scheduling of this meeting. The Prime Professional is responsible for documenting this meeting and copying all parties in attendance.

c) Prior to the preparation of specifications, the A/E shall obtain from the University Guide on the following subjects and incorporate them into the specifications. The document addresses such items as:
1. Asbestos Abatement and Environmental Remediation.
2. Safety Regulations.
3. Demolition Requirements.
4. Parking.
5. System Shutdown Requirements and Policy.

2. Schematic Submission Requirement:
 a) Provide a Basis of Design (BOD) document for the project. BOD to including design criteria and concepts and a list of questions and/or issues needing University input.
 b) Provide one (1) set of schematic drawings showing single line diagrams for all proposed systems and locations of all mechanical, electrical and telecommunication and data room, along with required size and headroom. For alterations, a floor plan indicating the area of work within the building shall also be included.
 c) Provide one (1) set of outline specifications indicating materials and type of systems proposed. Include a description of the design concept, of each mechanical, plumbing, fire protection and electrical system, the type of fuel used, related code compliance issues, and an understanding of existing conditions.

3. Design Development Submission Requirements:
 a) A brief written description of project intent and purpose and definition of submittal intent, unresolved issues, and issues needing University input.
 b) Provide one (1) set of 50% complete technical specifications including detailed Sequences of Operation for all mechanical and electrical systems.
 c) Provide one (1) set of 50% complete contract drawings. Drawings shall indicate all necessary equipment service clearances, major electrical feeders, as well as adequate access to all equipment for replacement without disturbing other systems and/or the building structure.
 d) The drawings must be coordinated and labeled according to Section E part 2.
 e) Include a detailed description of each proposed system and related code compliance issues.
 f) Include specific manufacturers’ catalog cuts giving a complete description of all proposed equipment.
 g) Provide explanation of any concept, equipment or material change from the previous submission.
 h) Include a Statement of Probable Cost.

4. Construction Document Submission Requirements:
 a) Revised final Statement of Probable Cost.
b) One (1) complete unbound specification booklet, and two (2) bound copies, complete with general and technical sections, which have been reviewed for proper coordination between trades.

c) Three (3) complete sets of contract drawings, which detail the installation of all equipment and materials to affect a functional system in accordance with the intent of the program.

d) The contract documents must require the Contractors to submit Sequences of Operation and maintenance instructions containing the preventive maintenance necessary to maintain the efficient operation of all equipment and components, with complete and detailed maintenance procedures. Required routine maintenance shall also be clearly stated.

e) Explanation of any new concept or equipment incorporated since the previous submittal. Failure to properly indicate any changes to systems previously approved may result in the University's rejection of work and non-acceptance of the finished project.

f) All equipment and materials indicated on the drawings must be cross referenced to the main systems they serve. The method of cross-reference shall be included in the drawing legend.

g) Final design drawings must include diagrams of the following but be limited to the details listed for each schematic:

(1) Air Flow: Complete diagram showing air handlers (CFM, brake HP, dampers, coils, and smoke detectors), return and exhaust fans (CFM, HP, dampers, smoke detectors), room CFMs, fire, fire/smoke and smoke dampers, ductwork pressure classification designations, distribution systems and duct main sizes.

(2) Water Flow: (Cooling, radiation, and others as applicable.) Diagram to show all pumps (GPM, heads, brake HP), valves, strainers, gages, converters, meters (expected demand, meter constants), zoning, locations, and pipe main sizes.

(3) Steam Flow: Diagram to show coils, converters, traps, valves, PRV's, meters, with required capacities, demands, constants, and pipe main sizes.

(4) BAS and Temperature Controls: Diagrams may be combined with above schematics.

(5) Electrical single line diagrams showing points of origin for all feeders, all panels, feeder sizes and over current protection.

(6) Plumbing riser diagrams for all water supply, drainage and vent systems. Risers shall include GPMs, DFUs and pipe main sizes.

(7) Natural gas/Oil riser diagrams for all natural gas/oil supply, return and vent systems. Risers shall include BTUs, GPMs and pipe main sizes.

5. Construction Administration Submission Requirements:

a) Contractor shall submit all submittals, shop drawings and RFI’s, within a reasonable timeframe, to both the University and A/E for review. The A/E is responsible for coordinating with the University prior to responding formally to submittals, shop drawings and RFI’s.

(1) A maximum of five (5) working days will be allowed for review and response to RFI’s.

(2) A maximum of ten (10) working days will be allowed for review and response of submittals and shop drawings.

b) Contractor shall provide a Submittal Log and Submittal Schedule to the University and A/E for coordination of submittals and shop drawings.

c) A Substitution Request Form is required for all products, equipment and accessory manufacturers not listed in the specifications. The form shall provide a detailed comparison between manufacturers, lead time, cost savings, other trades, etc. If cost savings is $0
University prefers that the contractor use the Basis of Design.

d) Contractor shall ensure that all submittals are legible, parts are clearly identified, and submittal has been reviewed against the latest set of Construction documents, Addendums and Bulletins prior to submission for review. Submittals consisting of catalog cut sheets/brochures with no selections identified will be rejected and not reviewed.

e) If a contradiction between the contract documents and this Guide occurs the Contractor is to bring it to the A/E’s and University Project Manager’s attention. If a resolution cannot be determined the Guide will take precedence.

f) Prime Professional to provide updated construction drawings, which includes addendums, sketches, bulletins, etc. created during the Construction Administration Phase.

G. The Drexel Green Initiative

1. THE DREXEL GREEN INITIATIVE at Drexel University was created in 2008 by Students, Faculty, and Staff dedicated to transforming Drexel's campus into a sustainability leader. The initiative covers all aspects of operations, buildings, academic initiatives, and student life and is responsible for the strategic plan to further sustainable practices and policies.

2. Drexel adopted Green Globes as a comprehensive green rating system for all new construction projects and existing buildings. The assessment process is an example of the University’s commitment to energy efficient and environmentally friendly design. Green Globes System is overseen by the Green Building Initiative, which owns the license to promote and further develop Green Globes in the United States. GBI is an accredited standards developer under the American National Standards Institute (ANSI).

3. Benchmarks:
 a) Increase energy efficiency by a minimum of 30% better than ASHRAE 90.1-2007.
 b) Reduce potable water consumption by 30% minimum over baseline 2005 EPAct Standards.
 c) Particulate reducing retrofits on construction machinery is required.

4. For new buildings, the A/E shall provide an energy budget to the University, prepared in cooperation with the mechanical and electrical consultants. The budget shall show the estimated use of energy for the structure calculated on a KW and BTU per square foot per year basis. The maximum BTU allotment or maximum allowable energy loads and specific requirements for U-values of walls and roofs for each building must comply with the 2009 International Energy Conservation Code which incorporates, by reference, ASHRAE/IESNA Standard 90.1-2007, “Energy Standard for Buildings Except Low-rise Residential Buildings”. Refer to the Electrical Sections of these documents for lighting standards and power factors.

H. Conservation of Energy

1. The University is dedicated to conserving energy and will scrutinize proposed designs for means of reducing not only initial cost, but also long-range operating costs. The A/E must work in close cooperation with his/her engineers to design new buildings and to remodel existing buildings to make the most efficient use of building materials and energy sources available.
2. Design and Specification Standards
 b) All designs and specifications shall meet and incorporate the requirements of any successor to, or replacement for, ANSI/ASHRAE/IESNA Standard 90.1-2007 and the 2009 IECC, or more restrictive standards, as required by law.
 c) All mandatory provisions of ANSI/ASHRAE/IESNA Standard 90.1-2007 and the 2009 IECC shall be met.
 d) All prescriptive provisions of ANSI/ASHRAE/IESNA Standard 90.1-2007 and the 2009 IECC shall be met, except as provided by the Energy Cost Budget Method.

3. Energy Cost Budget Method
 a) The energy cost budget method described in ANSI/ASHRAE/IESNA Standard 90.1-2007 shall be performed for all designs with the following additional requirements:
 (1) Calculations shall be performed for all 8,760 hours of the year.
 (2) Software used for simulation shall meet the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2007, Section 11.2 and shall be approved by the Drexel Facilities Management Department.
 (3) Climatic data shall be based on ASHRAE Weather Year for Energy Calculations Version 2 (WYCE2) dataset or the US Department of Energy, National Renewable Energy Laboratory's Typical Meteorological Year Version 3 (TMY3) dataset and shall utilize National Weather Service Station data for Philadelphia, PA (WBAN ID 13739).
 (4) Unless otherwise prescribed by law, current purchased energy rates shall be obtained from the Drexel Facilities Management Department. The purchased energy rates shall not be utilized for actual fiscal energy budgeting purposes.

4. Efficiency Standards Compliance Documentation
 a) Efficiency standards compliance documentation shall be prepared by the design professionals.
 b) All efficiency standards compliance documentation shall be submitted for review to the Drexel Facilities Management Department prior to final preparation of project bid documents (or earlier, if practicable).
 c) The following compliance documents (per the examples shown in the User's Manual for ANSI/ASHRAE/IESNA Standard 90.1-2007) shall be prepared and submitted for review:
 (1) Building Envelope Compliance Document Part I & II.
 (2) HVAC Manditory Provisions Part II.
 (3) HVAC Prescriptive Provisions Part III.
 (4) Service Water Heating Compliance Documentation.
 (5) Lighting Compliance Documentation (Space-by-Space Method).

5. Energy Consumption & Demand Data
 a) Energy consumption data shall be prepared by the design professionals.
b) Energy Consumption data shall be supplied for the typical meteorological year (as described in the Energy Cost Budget Method above) and for design conditions.

c) Energy consumption data shall be submitted for review to the Drexel Facilities Management Department prior to final preparation of project bid documents (or earlier, if practicable).

d) Energy consumption data shall be submitted in a Microsoft Excel spreadsheet file (worksheet, workbook, or comma-separated variable file) showing data for each of the 8,760 hours in the year.

e) Energy consumption may be indicated by thousands or millions of units but must be clearly labeled. (KWH, mmBtu, etc.)

f) The file shall contain the following data:
 (1) Hourly electricity consumption in watt-hours.
 (2) Electricity demand data, in watts, based on a 30-minute fixed demand window. The maximum of the two (2) 30-minute demand windows shall be the maximum demand for the reported hour.
 (3) Hourly saturated steam consumption (for buildings served by central plants) in British Thermal Units or pounds of steam at a specified pressure.
 (4) Hourly chilled water consumption (for buildings served by central plants) in British Thermal Units or ton-hours.
 (5) Space heating system fuel consumption as follows:
 (a) Natural gas consumption in British Thermal Units or cubic feet at a specified higher heating value per cubic foot for single (natural gas) fuel equipment.
 (b) Fuel oil consumption in British Thermal Units or gallons at a specified higher heating value per gallon for single (fuel oil) fuel equipment.
 (c) Total fuel input in British Thermal Units for dual fuel (natural gas & fuel oil) equipment.
 (6) Process (domestic hot water, kitchens, labs, etc.) heating system fuel consumption as follows:
 (a) Natural gas consumption in British Thermal Units or cubic feet at a specified higher heating value per cubic foot for single (natural gas) fuel equipment.
 (b) Fuel oil consumption in British Thermal Units or gallons at a specified higher heating value per gallon for single (fuel oil) fuel equipment.
 (c) Total fuel input in British Thermal Units for dual fuel (natural gas & fuel oil) equipment.
 (7) Water consumption in gallons or cubic feet.

g) In addition, the simulation software files used to prepare the energy analysis of the building design shall be submitted to the Drexel Facilities Management Department for performance monitoring and benchmarking purposes.

6. Energy Modeling and COMcheck
 a) A/E must create an Energy Model for all LEED and Green Globes projects.
 b) The University requires an Energy Model and/or COMcheck Compliance document for new construction and major renovation projects.
 c) A/E is to verify with University PM to determine if an Energy Model and/or COMcheck Compliance document are required for minor renovation projects.
d) The University will submit the A/E’s Energy Model and/or COMcheck on all new construction and major renovation projects for potential PECO rebates.

7. University’s energy philosophy is based on the following:
 a) Vision: Comfort, performance, and redundancy with minimum operating cost. Keep future consumption per square foot constant for a period of five (5) years, in accordance with the current University’s Campus Master Plan and Strategic Plan. Consumption levels are to match or exceed the University’s current level of 60% of our energy peers, as stated in Sightlines document. Sustainable designs utilizing Green Globes and LEED.
 b) Mission: Understand historical energy cost and consumption, facility infrastructure, and campus assets. Align the Energy Master Plan with the University’s Campus Master Plan and Strategic Plan.
 c) Procurement: Directly purchase utility energy and fuels from regulated utility companies at a reduce/fixed rate.
 d) Procure competitively to minimize unit costs: Continue to competitively bid to 3rd party energy companies for thermal and electrical utilities.
 e) Purchase thermal energy: Through existing steam and natural gas utilities.
 f) Incentives: Implement equipment and system designs that are supported by local, national and federal programs, i.e. PECO Smart Ideas, Energy Star, etc.
 g) Maintain fuel source flexibility: Implement dual fuel sources for building backup in the event of a utility failure.
 h) Conversion: Converting the raw utility energy into a form that can be moved through the distribution system, i.e. steam to heating hot water. Interconnect existing individual heating and/or cooling systems to create a central heating or cooling plant.
 i) Centralize heating and/or cooling conversion: The University will not create a centralized heating and/or cooling plant dedicated to each campus. Refer to Generation philosophy above.
 j) Distribution: The primary utility distributions are electric, natural gas, city water and steam. The secondary distributions are electric, natural gas, chilled water, heating hot water, cold water and hot water. Primary distributions are conveyed by City utility companies.
 k) Shorten runs: Reduce/eliminate pipe losses from primary distributions and create pods for secondary distributions to become main generation source, i.e. steam to heating hot water exchangers. Install sub-meters on main generation source at entrance to the building for more accurate energy measurements.
 l) Eliminate line losses: Install filters on infrastructure equipment. Possible installation of an electrical loop for multiple services to switch gear, to eliminate power loss to buildings.
 m) Minimize pressure: Size equipment in accordance with the guaranteed minimum natural gas and water pressures as published by the utility companies. Remove excess/abandon pressure reducing valves in steam systems.
 n) Optimize efficiency: Keep future consumption per square foot constant for a period of five (5) years, in accordance with the current University’s Campus Master Plan and Strategic Plan. Consumption levels are to match or exceed the University’s current level of 60% of our energy peers.
o) End Use: Engineering systems are to be designed with the intent that the selected equipment will be in operation for long time, minimum of 25 years. Sustainable designs utilizing Green Globes and LEED.
p) Control to minimize units of consumption via Metering: Sub-metering (electric, natural gas, steam and water) for a more accurate measurement of energy usage.
q) Control to minimize units of consumption via Controls and Systems: Upgrade/repair existing building automation systems (BAS) for a more accurate view of system performance, trending and opportunities for reducing energy. Upgrade/repair existing steam valves, steam condensate valves, steam condensate collection devices, and lighting control via occupancy sensors and/or BAS.

I. Construction Waste Management and Disposal

1. The Contractor and the Contractor's representatives shall comply with the University’s administrative and procedural requirements for construction waste management, including the following:
 a) Salvaging non-hazardous demolition and construction waste.
 b) Recycling non-hazardous demolition and construction waste.
 c) Disposing of non-hazardous demolition and construction waste.

2. Definitions:
 a) Construction Waste: Building and site improvement materials and other solid waste resulting from construction, remodeling, renovation, or repair operations. Construction waste includes packaging.
 b) Demolition Waste: Building and site improvement materials resulting from demolition or selective demolition operations.
 c) Disposal: Removal off-site of demolition and construction waste and subsequent sale, recycling, reuse, or deposit in landfill or incinerator acceptable to authorities having jurisdiction.
 d) Recycle: Recovery of demolition or construction waste for subsequent processing in preparation for reuse.
 e) Salvage: Recovery of demolition or construction waste and subsequent sale or reuse in another facility.
 f) Salvage and Reuse: Recovery of demolition or construction waste and subsequent incorporation into the Work.

3. Performance:
 a) Develop a waste management plan that results in end-of-Project rates for salvage/recycling 50-75% (by weight) of total waste generated by the Work.
 b) Salvage/Recycle: Drexel's goal is to salvage and recycle as much non-hazardous demolition and construction waste as possible. Including the following materials:
 (1) Demolition Waste:
 (a) Asphalitic concrete paving.
 (b) Concrete.
 (c) Concrete reinforcing steel.
 (d) Brick.
(e) Concrete masonry units.
(f) Wood studs.
(g) Wood joists.
(h) Plywood and oriented strand board.
(i) Wood paneling.
(j) Wood trim.
(k) Structural and miscellaneous steel.
(l) Rough hardware.
(m) Roofing.
(n) Insulation.
(o) Doors and frames.
(p) Door hardware.
(q) Windows.
(r) Glazing.
(s) Metal studs.
(t) Gypsum board.
(u) Acoustical tile and panels.
(v) Carpet.
(w) Carpet pad.
(x) Demountable partitions.
(y) Equipment.
(z) Cabinets.
(aa) Plumbing fixtures.
(bb) Piping.
(cc) Supports and hangers.
(dd) Valves.
(ee) Sprinklers.
(ff) Mechanical equipment.
(gg) Refrigerants.
(hh) Electrical conduit.
(ii) Copper wiring.
(jj) Lighting fixtures.
(kk) Lamps.
(ll) Ballasts.
(mm) Electrical devices.
(nn) Switchgear and panelboards.
(oo) Transformers.

(2) Construction Waste:
(a) Site-clearing waste.
(b) Masonry and CMU.
(c) Lumber.
(d) Wood sheet materials.
(e) Wood trim.
(f) Metals.
(g) Roofing.
(h) Insulation.
(i) Carpet and pad.
(j) Gypsum board.
(k) Piping.
(l) Electrical conduit.
(m) Packaging: Regardless of salvage/recycle goal indicated above, salvage or recycle 100 percent of the following uncontaminated packaging materials:
 (i) Paper.
 (ii) Cardboard.
 (iii) Boxes.
 (iv) Plastic sheet and film.
 (v) Polystyrene packaging.
 (vi) Wood crates.
 (vii) Plastic pails.

4. Submittals:
 a) Waste Management Plan: Submit plan before the Notice of Award date.
 b) Waste Reduction Progress Reports: Concurrent with each Application for Payment, submit a copy of report Include the following information:
 (1) Material category.
 (2) Generation point of waste.
 (3) Total quantity of waste in weight.
 (4) Quantity of waste salvaged, both estimated and actual in weight.
 (5) Quantity of waste recycled, both estimated and actual in weight.
 (6) Total quantity of waste recovered (salvaged plus recycled) in weight.
 (7) Total quantity of waste recovered (salvaged plus recycled) as a percentage of total waste.
 c) Waste Reduction Calculations: Before request for Substantial Completion, submit a copy of the calculated end-of-Project rates for salvage, recycling, and disposal as a percentage of total waste generated by the Work.
 d) Records of Donations: Indicate receipt and acceptance of salvageable waste donated to individuals and organizations. Indicate whether organization is tax exempt.
 e) Records of Sales: Indicate receipt and acceptance of salvageable waste sold to individuals and organizations. Indicate whether organization is tax exempt.
 f) Recycling and Processing Facility Records: Indicate receipt and acceptance of recyclable waste by recycling and processing facilities licensed to accept them. Include manifests, weight tickets, receipts, and invoices.
 g) Landfill and Incinerator Disposal Records: Indicate receipt and acceptance of waste by landfills and incinerator facilities licensed to accept them. Include manifests, weight tickets, receipts, and invoices.
 h) Qualification Data: For Waste Management Coordinator.

5. Refer to the specific Project Specifications for additional construction waste management requirements for degree of quality assurance, content of waste management plan, plan implementation, methods for salvaging demolition waste, recycling general waste, recycling demolition waste, recycling construction waste, and disposal of waste. This will typically be Section 01 74 19.
J. Noise and Vibration Control

1. Noise and vibration in terms of emission and transmission control is the responsibility of the A/E, and must be considered in the design of every building, even though specific requirements may not be stated in the Program. Principal considerations, which must be addressed, include:
 a) Noise control to provide for maximum usefulness of the facility by maintaining reverberation times and background sound levels within ranges that are appropriate for the intended use of the facility.
 b) Noise control in compliance with OSHA requirements for the health and safety of building occupants; control shall be for all areas of the facility, particularly equipment rooms, PRV stations, and fan rooms.
 c) Particular attention is required concerning the noise generated by equipment located on the exterior of the building and its impact upon adjacent properties or facilities, which may contain sensitive equipment (e.g. high resolution microscopes).
 d) Vibration control to limit sound produced by equipment and for protection of equipment and the building structure.

2. Interior Acoustic Environment
 a) ANSI/ASA Standard S12.60-2010/Part 1 American National Standard Acoustical Performance Criteria, Design Requirements, and Guidelines for Schools, Part 1: Permanent Schools” shall be used as the basis for defining goals for appropriate reverberation times and acoustical isolation of various types of spaces, such as:
 (1) The following maximum reverberation times for sound pressure levels in octave bands with mid-band frequencies of 500, 1000, and 2000 Hz for core learning spaces:
 (a) Enclosed volumes less than 10,000 cubic feet: 0.6 seconds.
 (b) Enclosed volumes between 10,000 and 20,000 cubic feet: 0.7 seconds.
 (c) Enclosed volumes greater than 20,000 cubic feet: no requirement.
 (2) The following minimum sound transmission class (STC) ratings required for single or composite wall, floor-ceiling, and roof-ceiling assemblies that separate the core learning spaces from the following spaces:
 (a) Corridor, staircase, office, or conference room: STC-45.
 (b) Other enclosed or open plan core learning space, speech clinic, health care room, and outdoors: STC-50.
 (c) Common use and public use toilet rooms: STC-53.
 (d) Music room, mechanical/electrical equipment rooms: STC-60.
 b) The current edition of the ASHRAE HVAC Applications Handbook shall be used as the basis for defining appropriate HVAC-related background sound pressure levels for various types of spaces.
 (1) Sound pressure level design goals shall be defined utilizing the Room Criteria (RC) Method, which includes a quantitative value and a qualitative suffix. The “N” suffix, indicating a desired neutral quality sound, shall be the design intent. Where system installations or modifications result in an RC rating that exceeds the desired quantitative value or does not achieve a neutral quality sound, it is the responsibility of the design engineer to revise the design or incorporate sound attenuating
measures to achieve the desired goal.

(2) The following ranges of limits shall be used as the basis of design for all projects, regardless of whether the Program fails to mention acoustical considerations:

<table>
<thead>
<tr>
<th>Room or Space Type</th>
<th>RC(N) Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classrooms and Auditoriums</td>
<td>25 to 30</td>
</tr>
<tr>
<td>Residences and Sleeping Areas</td>
<td>25 to 35</td>
</tr>
<tr>
<td>Video Teleconferencing Rooms</td>
<td>25 (max)</td>
</tr>
<tr>
<td>Private Offices and Conference Rooms</td>
<td>30 to 35</td>
</tr>
<tr>
<td>Open-plan Offices</td>
<td>30 to 40</td>
</tr>
<tr>
<td>Executive Dining Rooms</td>
<td>30 to 35</td>
</tr>
<tr>
<td>Libraries</td>
<td>30 to 40</td>
</tr>
<tr>
<td>Laboratories with fume hoods</td>
<td>35 to 55</td>
</tr>
<tr>
<td>Public Dining Areas</td>
<td>35 to 40</td>
</tr>
<tr>
<td>Corridors and Lobbies</td>
<td>40 to 45</td>
</tr>
<tr>
<td>Gymnasiuums and Natatoriums</td>
<td>40 to 50</td>
</tr>
</tbody>
</table>

c) The current edition of the ASHRAE HVAC Applications Handbook shall be used as the basis for defining appropriate HVAC-related vibration levels for various types of spaces.

3. Exterior Sound and Vibration Transmission
 a) The operation of any equipment installed on the exterior of a building or installed on inside of a building that results in the discharge of sound outside of a building shall comply with maximum permissible levels stipulated in Chapter 10-400 of the Philadelphia Code, entitled “Noise and Excessive Vibration.”
 (1) §10-403-(3) limits sound from non-residential properties to 5 dB above background sound level measured at the property boundary of the nearest occupied residential property and to 10 dB above background sound level measured at the property boundary of the nearest occupied non-residential property.
 (2) §10-403-(11) limits vibration levels to 0.15 inches per second beyond any property boundary or 30 yards from any moving source.

4. Control of mechanical, plumbing, fire protection and electrical equipment shall be enhanced by giving attention to the proximity of the noise and vibration generating equipment to areas requiring low sound levels.

5. A post construction sound and vibration test shall be specified to prove the integrity of sound and vibration control where this is critical, and on a random sampling basis in other areas if deemed necessary. Specifications shall require that testing equipment meet the latest ASA/ANSI Standards for sound level meters. The A/E shall review the need for this requirement and make his/her recommendation in the Design Development phase report.
6. An acoustical analysis shall be submitted for all major or critical equipment. The A/E shall define the major and critical pieces of equipment within the documents. A copy of the list shall be submitted to the University Project Manager for review. The A/E shall review the need for this requirement and make his/her recommendations in the Design Development phase report.

K. Temperature Control Requirements

The Program developed for each project will generally list specific temperature and/or humidity requirements for the facility, which are necessary for the execution of the space function. In the event that no temperature and/or humidity levels are indicated in the program, the A/E shall first follow this Guide and the 2009 IECC and then the latest versions of the ASHRAE Handbook of Fundamentals, ASHRAE Guidelines and ASHRAE Energy Standards. The A/E shall document the design temperature and relative humidity range for each space and include this information in the Schematic Design report for review and approval by Drexel.

Space temperature controls and equipment controls are to be incorporated into Building Automation Systems (BAS) where they are present in existing buildings. New construction controls are to be part of an approved BAS system.

1. In general, all non-critical temperature/humidity areas shall be designed to maintain the following conditions in accordance with the 2009 International Energy Conservation Code:
 a) Summer periods: minimum 75ºF +/- 2ºF; 50% RH +/- 5% RH in occupied areas.
 b) Winter periods: maximum 72ºF +/- 2ºF; 30% RH +/- 10% RH in occupied areas.

2. The summer period requirements listed above shall be maintained with an outdoor air dry bulb temperature of 95ºF concurrent with a wet bulb temperature of 78ºF.

3. The winter period requirements listed above shall be maintained with an outdoor air dry bulb temperature of 0ºF. The 0ºF temperature provides a built-in safety factor.

4. Mechanical Equipment Rooms and Penthouse temperature shall be designed to maintain the following conditions:
 a) Summer (cooling): Ventilated 10-15 air changes per hour maximum based on gross volume with a 10 foot maximum height (thermostatically controlled to 85ºF db).
 b) Winter (heating): Ventilated 10-15 air changes per hour maximum based on gross volume with a 10 foot maximum height (thermostatically controlled to 65ºF db).

5. Electrical Closet temperature shall be designed to maintain the following conditions:
 a) Summer (cooling): 86ºF db average, 104ºF db maximum.
 b) Winter (heating): 65ºF db, minimum.

6. Telecommunication and Data Room temperature/humidity shall be designed to maintain the following condition:
 a) Setpoint: 70ºF db, range 68ºF-74ºF db; 40-55% RH.
L. Utilities

Prior to initiating the design of a new utility system for a new building or renovation to an existing building that requires new service or connection to or modification of an existing service, review and approval must be obtained from Facilities Management.

Any excavation to facilitate the removal, rerouting, or installation of below-ground must comply with the requirements of the Pennsylvania One Call System. Pennsylvania law requires three (3) working days’ notice for Construction Phase and ten (10) working days for design stage.

Very often, the location of underground utilities or utilities routed throughout each building is taken from public records, documentation associated with previous University projects, and field location of vents, valves, manholes, inlets, etc. The extent, exact location, and depth of underground utilities have not been verified by the University. The Engineer shall determine, or direct the Installing Contractor to determine, the extent and exact location and depth of all existing utilities prior to commencing work:

1. Chilled Water Distribution System
 a) The University presently does not have a central chilled water system. However, in many cases it may have a chiller plant serving a building complex. Chilled water is generally operated during cooling season months only (April-October).
 b) Prior to initiating the design of a system intended to interface with the central chilled water system, approval for the interconnection must be obtained from Facilities Management. Consideration for approval requires that the following information be supplied:
 (1) Location of building.
 (2) Peak load to be imposed upon the system, month and time of day.
 (3) Design temperatures (entering water and leaving water), required GPM and design pressure differential.
 (4) List of anticipated control points to be added to the BAS.

 b) The basis for approval is the available chiller plant capacity, ability to diversify loads to other plants and anticipated plant capacity modifications.

 c) Costs attributed to engineering, modification, shut-downs, testing, or the provision of maintenance personnel associated with any chilled water system modifications, shall be the responsibility of the Project requiring the modifications.

2. Steam Distribution System
 a) Steam is available throughout most of the University campus at high, medium or low pressure depending on the location. The high pressure lines are 150 to 200 PSIG, medium pressure lines are 50 to 90 PSIG, and low pressure lines are 5 to 15 PSIG. The steam shall be used for humidification where required.
b) The use of steam shall be confined to mechanical rooms, laboratories, or areas where process steam is required, except for local humidifiers. Steam shall not be used for perimeter radiation, unless modifying existing steam radiation systems.

c) Prior to the initial stages of design, approval for interconnection to the steam system must be obtained from Facilities Management. The following information must be provided for steam system evaluation:
 (1) Location of device requiring steam service (building, floor, room, etc.).
 (2) Intended point of interconnection to the existing system.
 (3) The methods of condensate return to the distribution system or removal from the new device or renovated area to the building’s sanitary sewer system (with proper cooling devices).
 (4) Required load in pounds per hour, maximum required pressure, and anticipated annual usage.
 (5) List of anticipated control points to be added to the BAS.

d) Where practical, feasible, and beneficial to other building systems, heat from steam condensate shall be recovered prior to discharging to drain.

3. Laboratory Gases
 a) Laboratory vacuum is available in the following buildings: Stratton, Disque, Bossone.
 b) Laboratory air is available in the following buildings: Stratton, Disque, LeBow, CAT, Bossone.
 c) All other gases shall be stand-alone systems.

4. Potable and Deionized Water Systems
 a) Potable water is available within each existing building and must be extended from City of Philadelphia street mains for new buildings or connected to existing water services where practical.
 b) The City water pressure in the streets varies across the University and throughout the year. It runs between 65 and 80 PSIG, but could be lower under some circumstances, such as summer fire hydrant use. The A/E must contact Facilities Management when connecting to existing building systems. The A/E must contact the City of Philadelphia's Water Department when interconnecting with the street mains. Document provisions for backflow prevention device in all connections to fire protection water supply systems in accordance with the Philadelphia Water Department’s requirements.
 c) All domestic water piping must conform to City of Philadelphia Codes and this Guide.
 d) Deionized (DI) and reverse osmosis (RO) water systems are dedicated stand-alone systems installed on an as-needed basis.
 e) Distilled water is available in Disque and Nesbitt Halls.
 f) Where domestic hot water is not available to a tenant by the Building Owner, such as is the case in One Drexel Plaza, domestic hot water heaters and appropriate safety relief valve devices and piping shall be installed to satisfy the domestic hot water demand of the project.
 g) Backflow preventers shall be installed where the possibility of cross-contamination exists. Refer to Section 22 05 00 for approved backflow preventers.
5. Sanitary and Storm Sewers
 a) The City of Philadelphia uses a combined system. All sanitary and storm drainage piping
 and sewers must be designed and installed in accordance with the City of Philadelphia
 b) The A/E is responsible for the submission of sanitary and storm drainage design
 documents to the City of Philadelphia for preliminary approval.

6. Electrical Distribution
 a) Prior to the initial design stage, Facilities Management must be consulted as to the choice
 of primary supply voltage, its location and the available capacity. The A/E should
 consider that 480/277-volt, three phase electrical service is not available in all buildings
 and adjust their equipment selection and system design accordingly.
 b) Emergency power capacity varies throughout the University. Most University buildings
 are connected to an emergency generator. During the design development phase the A/E
 shall identify the emergency power loads. These must be reviewed with the University to
 verify connection to emergency system and availability of power.
 c) The A/E shall be responsible for investigating the adequacy of power system capacity at
 all points of connection to existing power distribution systems. The A/E shall develop
 estimates of the additional load, as well as estimates of the existing peak load, and
 demonstrate that adequate capacity is available. Estimates of existing peak load shall be
 based upon metered values and/or calculations that tabulate connected load and
 appropriate diversity factors. Any proposed power connections to existing systems shall
 be approved in advance by Facilities Management.
 d) On all projects which will increase the electrical load on the existing system by more than
 50 KW, perform a load study consisting of installing a KWH meter on the existing system
 for a period of one (1) week. The A/E will review the need for this during the schematic
 design phase and if required coordinate with Facilities Management.

M. Abandoned Equipment and Materials

1. All equipment, ductwork, piping, conduit, wiring and supports made obsolete by new
 installation shall be removed and floors, overhead and walls appropriately patched and finished.

2. Intentions to abandon-in-place existing equipment, ductwork, piping, conduit, wiring, and
 supports shall be brought to the attention of the University Project Management for review and
 approval.

3. Prior to removing abandoned equipment, ductwork, piping, conduit, wiring and supports the
 contractor must acquire approval from Drexel University’s Environmental Health and Safety
 and Facilities Departments via the University Project Manager.

N. General Considerations – Prime Professional

1. The A/E is responsible for reviewing all City of Philadelphia Agency's, Philadelphia Gas Works,
 Philadelphia Electric Co., Philadelphia Water Department, SEPTA, and Amtrak, requirements
 associated with installing, excavating and backfilling adjacent to non-University owned
underground utilities. The contract documents shall not violate existing compliant conditions. The contractor shall be responsible for all PA One-Call associated coordination.

2. Visits to Site:
 a) The University understands that all existing conditions cannot be accounted for in renovation and expansion projects but the A/E is required to visit the site to survey, inspect and gather enough information about the existing conditions in order to clearly document major impacts to existing systems, the intent of routing and removal of abandoned work as accurately as possible. Construction documents must show routings for new piping, ductwork, conduit, etc. and relocated existing piping, ductwork, conduit, etc.

3. Code review and permitting:
 a) Prime Professional is responsible for code review and making early submissions to the City of Philadelphia for initial review to determine viability of design intent including separation of alternate proposed work. If a variance is needed A/E would be responsible for representation.
 b) Prime Contractor is responsible for obtaining construction permits with the City of Philadelphia.

4. The Prime Professional and all consultants are responsible for the preparation of a specification section within Division 00 or 01 that addresses and makes clear to the contractors the following:
 a) A brief statement describing the intent of the project.
 b) A statement describing the scope of work for each discipline.
 c) A description of the project location
 d) A definition of the project construction schedule
 e) List of construction documents.
 f) Define the bidding requirements.
 g) List all alternates of scope with a numerical designation and coordinated by trade.
 h) Define the shop drawing review process including the quantity of submittals required, chain of distribution, required review period (Professional and University), and format of submittals for samples, catalog cuts, identification and required contractor review stamps.
 i) Require the Prime Contractor to submit a list, by C.S.I. designation, of all sub-contractors to be used on the project and a list of intended manufacturers for all equipment to be supplied under this contract.
 j) Include a statement regarding the diagrammatic nature of the drawings and the contractor's responsibility for the layout and coordination of his work with the various trades. Renovation projects shall demand that the contractors visit the site prior to submitting bids to review as-built conditions.
 k) State that the continuity of services to occupied portions of the University is mandatory. Inadvertent interruptions must be corrected immediately. The contractor is responsible for providing all necessary labor, including additional crews and overtime labor, and all materials as required ensuring a prompt resolution at no expense to the University.
 l) Require a statement regarding each contractor's responsibility for the removal of debris on a daily basis. The prime contractor selected as the party responsible for designating the on-site point of disposal for all site generated debris and for the timely removal of the
collected debris from the site. Note that the University has adopted strict recycle policies, and construction debris and/or hazardous materials are not permitted in University dumpsters or other trash recycling containers.

m) Upon completion of the project all hazardous materials and/or construction debris must be removed immediately. The contractor will be financially responsible for disposal of all hazardous materials and/or construction debris if these materials are left on site and University has to handle the disposal.

n) Define the contractor's responsibility to properly notify the Prime Professional of the contractor's desire to deviate from the equipment and materials designated within the contract documents as either the "standard of design" or listed "equivalents". Such notification must be made ten (10) days prior to the bid date and shall be properly documented regarding the equivalency of the substitution. Define the contractor's responsibility for addressing any changes to the remaining systems, equipment and/or materials within the contact documents or any existing conditions that may be affected as result of the equipment and/or material substitution. Notification of all accepted deviations shall be in the form of Addenda to assure equal bidding basis among contractors.

o) Define the contractor's responsibility to unconditionally guarantee, in writing, all materials and workmanship for a period year from the date of final acceptance by the University. The guarantee must include the repair and/or replacement of all equipment and materials in which defects may develop. Guaranties submitted by sub-contractors and equipment manufacturers must be countersigned by the contractually-related contractor for joint and several responsibilities. Manufacturer’s equipment guaranties or warranties which extend beyond the one (1) year shall likewise be transmitted to the University.

p) Define the contractor's responsibility for maintaining an accurate set of as-built drawings to be submitted to University at time of close-out.

q) Define the contractor's responsibility for temporary facilities and control with the following sub-sections:
 (1) Scope.
 (2) Regulations and standards.
 (3) Offices.
 (4) Telephones.
 (5) Access to work areas.
 (6) Scaffolding and OSHA-required fall protection components.
 (7) Hoisting facilities.
 (8) Guardrails, handrails and covers for openings.
 (9) On-site storage.
 (10) Fire Protection.
 (11) Security and dust enclosures.
 (12) Trash removal.
 (13) Toilets.
 (14) Water.
 (15) Electrical.
 (16) Heat.
 (17) Removal of temporary facilities.
 (18) Egress from mechanical spaces must be minimum 7 feet high by 28 inches wide.
r) Define the project closeout requirements such as pre-final reviews, substantial completion reviews and a final review of the work. List the contractor's requirements for the submission of data at each stage of review and generally as follows:

1. **Pre-final review** - Professional's site visit to confirm the contractor’s punch list of the items which remain to be completed. The contractor-generated punch list shall define the tasks to be completed and shall be arranged to indicate each contractor's responsibility, necessary remedy and the date of completion. This review shall be in conjunction with University personnel.

2. **Substantial completion review** - After certification by the contractor that of all punch list items have been completed, a site review will be conducted by the Professionals and University personnel to verify satisfactory completion of all punch list items. In the event that all punch list items have been completed to the satisfaction of the Owner and design team, a substantial completion certificate will be issued.

3. **Final review meeting** - final site review by the Professional Staff to recommend final acceptance by the University and to ascertain that the following have been completed:
 - (a) All remaining punch list items.
 - (b) All building staff and maintenance personnel have been instructed the maintenance and operation of the systems installed under this contract.
 - (c) Verify that the following data has been received by the University:
 - (i) Guaranties.
 - (ii) Final as-built drawings and diagrams, showing all installation changes.
 - (iii) Shop drawing files.
 - (iv) Three (3) sets of Operating and Maintenance Manuals. Submitted material must include installation manuals, service manuals, repair manuals, and parts manuals.
 - (v) Substantial completion certificates.
 - (vi) List of attic stock (paint, flooring, carpet tile, ceiling tile, etc.) for each room from Prime Contractor.
 - (vii) Consent of Surety to final payment.
 - (viii) Waiver of liens.
 - (ix) Transfer of keys.
 - (x) All legal and insurance requirements.

4. **Record Drawings** - Project record drawing, in AutoCAD 2015 and PDF formats, files shall be furnished to the University at the project completion. Two (2) CDs are to be submitted.

5. **A/E is to design the building or structure exits shall be so arranged and maintained as to provide free and unobstructed egress from all parts of the building or structure at all times when it is occupied. Exit route to be 7’-6” high by 2’-4” wide as per OSHA Standard 29 CFR parts 1910.36 and 1926.34.**
O. General Considerations – Prime Contractor

1. The A/E is responsible for reviewing all City of Philadelphia Agency's, Philadelphia Gas Works, Philadelphia Electric Co., Philadelphia Water Department, SEPTA, and Amtrak, requirements associated with installing, excavating and backfilling adjacent to non-University owned underground utilities. The contract documents shall not violate existing compliant conditions. The contractor shall be responsible for all PA One-Call associated coordination.

2. In addition to the requirements presented herein, each specification shall contain the following general information:
 a) General:
 (1) Incorporate, by reference, Divisions 00 and 01 into all required trades, i.e. Division 22, 23, 25, 26, etc.
 (2) Define the Contractors covered by the General Requirements (i.e. Carpentry, Painting, HVAC, Plumbing, Fire Protection; Electrical, Fire Alarm, Telecommunications, Audio Visual, Insulation, Controls, and Testing, Adjusting, and Balancing, etc.).
 (3) Define any specific technical terms relating to the trades covered by the section.
 b) Laws, Ordinances, Regulations and Requirements:
 (1) State that all workmanship must conform to all pertinent laws, ordinances and regulations of all bodies having jurisdiction.
 (2) Require each Contractor to pay all fees and obtain and pay for all permits and inspections required by any authority having jurisdiction in connection with his work, and provide three (3) copies of all permits and inspection reports to be made part of this document to the Project Manager.
 c) Define the contractor's method of procedure regarding the following:
 (1) Installation, connection and interconnection of all systems in accordance with manufacturer’s recommendations and best trade practices.
 (2) Methods of protection of piping and equipment.
 (3) Coordination between trades and responsibility for elevations, grades, etc.
 (4) Installation of valves, dampers, panels, etc., for full accessibility, service and maintenance.
 d) Define the contractor's responsibility for the provision of all lintels required for the completion of his work.
 e) Define any specific painting and/or finishing requirements for materials and equipment not supplied with a factory applied finish.
 f) Include a description of the contractor's responsibility regarding abandonment, removal, relocation and salvage rights.
 g) Tests:
 (1) Define the contractors’ responsibility for the execution of notification requirements, documentation of results and witnessing.
 (2) Define, in detail, the tests required as part of the contract. Give specific details as to testing medium, duration, level, etc.
 (3) Refer the Contractor to other specific tests requirements in this and other Divisions for systems such as Controls, Testing, Adjusting, and Balancing, Fire Protection, Electrical, Fire Alarm, Plumbing, etc.
h) Define the contractor's responsibility for applying, obtaining and paying for all charges associated with the connection to non-University owned utilities. Prior to the connection to University owned utilities, the contractor shall obtain permission and coordinate such with the Department of Facilities Management or the University’s Project Manager. Contractor shall contact Pennsylvania one-call and call non-participating utilities.

i) Operating and Maintenance Manuals:
 (1) Each contractor shall be directed to provide three (3) copies of printed instructions in separate hardback, three-ring loose-leaf binders. The instructions shall be prepared by section and contain detail operating and maintenance data including wiring and piping diagrams. Each section shall be labeled and include detailed parts list data and the name, address and phone number of the nearest supply source.
 (2) The manuals must provide all the information required to run the building efficiently. Provide description of all equipment operation. The materials submitted must include installation manuals, repair manuals, programming manuals, troubleshooting manuals, and parts manuals.
 (3) The manufacturer's specification sheets, if generalized in any way, will be clearly marked to show exactly which item has been supplied, and the job designation for that item (e.g. PRV-1) will be noted on manufacturer's specification sheet which includes all details for this unit including the complete model number, motor hp, voltage, etc.
 (4) If there are differences between pieces of equipment, then include a specification sheet for each, properly marked.
 (5) Include temperature control diagrams, written sequence of operation, control program files and service instructions including any specialized tools required to perform service.
 (6) Provide one (1) section for preventive maintenance procedures.
 (7) Provide lubrication diagrams and procedures.
 (8) Include Contractor's phone numbers and any other reference required to obtain warranty service.

j) Visits to Site:
 (1) All renovation and expansion projects require the Contractors to visit the site and inspect all existing conditions. Any discrepancies noted between the contract documents and existing conditions must be brought to the University Project Manager and Prime Professional’s attention prior to the submission of bids. Change order requests will not be considered for any additional work relating to the connection of new work to existing systems or adaptability of new systems to existing structures.

k) Entrance of Equipment:
 (1) Each contractor will be responsible for all necessary rigging required for the completion of work under his contract.

l) Shutdown and Permit Request Forms:
 (1) Contractor is responsible for completing University shutdown and permit request forms located in section 01 35 00. The Contractor shall not shutdown, disconnect, weld, solder, etc. prior to University review and approval.

m) Servicing of Equipment and Systems:
 (1) All water-filled systems shall be equipped with accessible vent valves, expansion
tanks, drains and isolation valves, safeties, and gauges for the purpose of startup, operation, service and maintenance in a cost effective manner.

(2) Wear and tear parts which are equipment-specific will be specified and quoted with life expectancy, lead time and price.

(3) An extended 5 years warranty shall be included on the wear and tear parts which are equipment-specific. A list of components fitting this description shall be forwarded to the Project Manager prior to Project Closeout.

(4) Include all specialized equipment or tools required to service or maintain the equipment.

(5) Upon final acceptance of the project by the Owner, the one (1) year guaranty period of all equipment and materials will be initiated. During this period, the contractor shall make a minimum of two (2) visits to the site (6 months after acceptance and immediately prior to the end of the guarantee period). During each visit, the contractor shall thoroughly check all equipment for proper operation. Reports shall be generated and forwarded to the Facilities Management describing the systems inspected, date of inspection and status of equipment.

n) Supports:
 (1) Each contractor will be responsible for providing all materials, equipment supports, supplies and labor necessary to support and brace and strengthen equipment according to industry trade standards and approved materials provided under his contract.

o) Cutting and Patching:
 (1) Cutting and patching shall be as per the contract documents and coordinated between trades.

p) Sleeves:
 (1) Each contractor must be required to be responsible for the furnishing and setting of all sleeves for piping and ductwork which penetrate wall, floors and cast in place concrete construction. The specification and drawings must define and detail the installation of grouting and waterproofing of the sleeves and fireproofing, if necessary.

q) Escutcheons:
 (1) All un-insulated piping and ductwork exposed in occupied areas must be provided with heavy, solid pattern, painted escutcheons where such materials pass through wall, floors or ceilings. Escutcheons are not required in equipment rooms or unfinished areas.

r) Machinery Guards:
 (1) All rotating equipment shall be provided with accessible and removable expanded sheet steel guards over belt drives, coupling and other moving elements to protect personnel from injury as required by OSHA regulations.

s) Lubrication (per manufacturer's recommendation):
 (1) Each contractor shall be responsible for the initial lubrication of all equipment prior to equipment start-up.

 (2) A list of all equipment requiring lubrication, including the identification of all specific points of lubrication shall be produced and forwarded to the Owner.

 (3) Each contractor shall be required to furnish written instructions on the lubricating procedure and shall furnish not less than a one year supply of all necessary
lubricants.

t) Welding:
(1) Each welder engaged to work on any University project shall be certified as having passed qualification tests prescribed by the National Certified Pipe Welding Bureau or other reputable laboratory or agency.
(2) Contractor shall request a Hot Works Permit prior to performing any welding operation. The request must be submitted by the Project Manager to Fire and Life Safety in the Department of Public Safety. Refer to Section 01 35 00.
(3) Specify the protection of adjacent surfaces, ventilation requirements and system fire alarm shutdown and fire watch as detailed in the standard University Scope Document. Fume controls to be used in occupied buildings.

u) Mechanical-Electrical Coordination:
(1) Include an article that clearly defines the extent of responsibility between the mechanical and electrical contractors regarding equipment that involves the work of both trades.
(2) Specific items to be addressed shall include, but in no case be limited to the furnishing and installation of:
 (a) Motors and starters.
 (b) Safety switches.
 (c) Control wiring.
 (d) Wiring diagrams.
 (e) Power supplies.
 (f) Pneumatic tubing and connections.
 (g) Network wiring.
(3) The specific contractor shall be directed to pertinent sections of the electrical specifications which define wiring standards, conduits, motor efficiencies, controllers and automatic temperature control requirements.

v) Shop Drawings:
(1) Each shop drawing submitted shall be identified by the Project Name, Specification Section, and Drawing Numbers.
(2) Shop drawing data shall include but not be limited to:
 (a) Manufacturer's catalog designation.
 (b) Complete electrical data and wiring diagrams.
 (c) Dimensions, capacities, ratings, materials and finishes.
(3) Each submittal shall be required to bear the review stamp of each contractor associated with the processing of the document. The processing of shop drawings shall follow contractual relationships between the Prime Contractor and all Sub-contractors.
(4) Shop drawings which require coordination of two (2) or more trades shall be required to bear the stamp of the coordinating trades.

w) Excavation and Backfill:
(1) Define the contractor's responsibility for performing all excavation, backfilling and pumping necessary for the completion of his work. Define shoring, excavated material storage, removal of unsuitable materials, trench depth, support of trench materials (i.e. conduits) and security requirements. As a minimum, the contract documents shall impose the following conditions:
(a) Each contractor shall perform all excavation, backfilling and pumping necessary for completion of work under his contract.

(b) Removal from premises or deposit as directed by Owner all material excavated and not required or suitable for backfilling. Contractor shall provide disposal documentation that includes quantity disposed and location of disposal facility.

(c) Carefully remove and store topsoil, shrubbery and sod until underground work is complete and trenches are backfilled and then reinstall. Replace any damaged items to the satisfaction of the Owner.

(d) Trench depth shall allow adequate cover over piping, ducts and conduit. Walls shall be perpendicular to the top of piping and ducts and trench bottoms shall be instrument graded in the direction of flow as required. Earth shall be scooped out under pipe hubs to provide a solid bearing for the duct banks or conduit on undisturbed earth. Cinder fill, stones or bricks beneath duct banks or conduits are prohibited. Where necessary provide sand, pea gravel or other underlie required by the conduit or equipment manufacturer.

(e) Each contractor shall provide sheathing, shoring and bracing necessary to complete his excavation and backfilling work and shall exercise every precaution necessary to prevent accident, injury or death to any human and damage to property of others. Remove all sheathing, shoring and bracing upon completion of work.

(f) It shall be the responsibility of each contractor to check with the various utility companies and make the necessary arrangements to avoid damage to property. Each contractor is responsible for damage during excavation to existing piping or equipment. Such damage shall be repaired promptly without cost to the Owner.

(g) Backfill after inspection and approval. Backfill shall be made with clean earth, free from rocks, frozen particles, debris or other foreign materials. Contractor shall provide documentation that the backfill is clean. Deposit in uniform layers not over six inches (6") thick with each layer mechanically tamped before the next layer is applied. When approved backfill material is not available from the site, each contractor, at his own expense shall provide additional select backfill to complete the installation.

(h) All trenches that pass under wall foundations shall be backfilled with lean concrete, full height, directly under wall footing, and at a 1:1 slope away from wall or column footing. Trenches that are parallel with and deeper than wall foundations shall be backfilled with lean concrete on a 1:1 slope away from the bottom of the wall or column footing.

(i) Each contractor shall perform all cutting and patching to sidewalks, curbs, bituminous paving, walls, etc. required by performance of excavation and backfilling. Install and maintain temporary paving as required. Make repairs to sidewalks in complete blocks, partial patching will not be acceptable.

(j) Where rock is encountered during installation of underground systems, carry trenches to a point six inches (6") below invert of conduit and provide a six inch (6") layer of crushed stone of gravel as a cushion.
(k) All excavation work shall include all pumping equipment, materials and labor necessary to keep all excavations free of water. Provide well points as required with disposition of water.

(l) Each contractor shall provide suitable indemnity for all accidents to humans, animals, environment, or equipment caused by his excavating and backfilling work. He shall provide suitable guards, barricades, red lanterns, flares and take the necessary precaution for an approved and safe installation. All trenches shall be backfilled at the end of each working day. Where a trench must be left open, provide coverings of adequate size and strength over entire open area.

3. Contractor is to construct the building or structure and install infrastructure to ensure all exits shall be arranged and maintained as to provide free and unobstructed egress from all parts of the building or structure at all times when it is occupied. Exit route to be 7'-6” high by 2'-4” wide as per OSHA Standard 29 CFR parts 1910.36 and 1926.34.

P. Design Build Projects

1. Prime Contractor is responsible for contracting Prime Professional and sub-consultant services for project construction and permits. Construction documents shall be in accordance with project RFP, this Guide, and local, state and national regulations.

2. Prime Contractor is required to have their contracted Prime Professional review and sign-off on all payment applications and change orders for the project.

Q. Pre-Purchased Equipment

1. The University often pre-purchases equipment due to project scheduling. The Prime Professional is to incorporate the following information into the specifications for reference by the Prime Contractor.
 a) Pre-Purchased Specification:
 (1) General: The purpose of this specification is to pre-purchase equipment. The successful bidder shall submit shop drawings, for review. Shipping and handling costs to the site (FOB, Philadelphia, PA) shall be listed separately as an addition to the cost of the equipment. The rigging of the equipment and accessories to their final location, installations, connections, and power and controls, will be provided by the installing Contractor.
 (2) Acceptance or Rejection of Proposals: The University, in its sole discretion, may waive any informality in any proposal, may accept any proposal or may reject any or all proposals. The University shall announce the successful manufacturer within seven (7) days after opening of proposals, but such announcement shall not be construed as a rejection of any other proposal. The accepted manufacturer shall promptly execute the Contract and all related documents, which shall be prepared by the University. Upon failure of the accepted manufacturer to execute such documents within four (4) business days after they have been presented for execution, such manufacturer shall be disqualified.
(3) **Assignment of Contract and Payment:**

 (a) The University reserves the right to assign this Contract to the installing contractor for coordination and administration. In no event shall the responsibility of the manufacturer, toward the University, as specified, be abrogated.

 (b) The manufacturer shall agree to terms and conditions in the University, purchase order agreement and conditions specified herein. The manufacturer shall invoice for payment at time of shipping and University shall issue payment up to a predetermined percentage of invoiced amounts. The remaining percentage of the invoice shall be retained until acceptance by University.

(4) **Codes, Rules, Permits and Fees:** Nothing contained in this specification shall be so construed as to conflict with the standards of the National Fire Protection Association, or any local, municipal, State or Federal regulation governing the installation of the equipment specified herein, and the requirements of same. All such laws, ordinances and regulations, where they apply to this work, are hereby incorporated into and made a part of this Specification. Where applicable, materials and equipment shall bear stamps or seals of UL, IEEE, NEMA, ANSI, ASME, and other industry regulating groups. In case of difference between governing codes, specifications, laws, ordinances, industry and utility regulations, or contract documents, the most stringent shall govern. The manufacturer shall promptly notify the University, in writing, of such differences.

(5) **Cooperation:** The manufacturer shall submit as required, all setting plans, templates, shop drawings, electrical wiring diagrams, etc., to insure proper space and functional relationship to other equipment and services.

(6) **Materials and Equipment:**

 (a) All materials and equipment shall be new, shall bear manufacturer's name and shall conform to the grade, quality and standards specified herein. Type, capacity and application shall be suitable and capable of satisfactory operation for the purpose intended.

 (b) All materials and equipment shall be adequately covered and protected against dirt, water, chemical or mechanical damage.

 (c) No change in character or make of the material specified herein will be permitted at any time after the proposals are received. Manufacturers wishing changes must make written application to the University at least four (4) days prior to the time of closing of bids, and if such changes are approved by the University, each manufacturer who is involved will be so notified.

(7) **Shop Drawings:**

 (a) Manufacturer shall furnish to the University four (4) copies of such shop, erection, field and setting drawings or diagrams, dimensioned and in correct scale, to make clear the work intended or to show its relation to adjacent work or the work of other trades within ten (10) working days from award of Purchase Order Agreement. The Manufacturer shall make any changes on such drawings or diagrams as are required, and shall resubmit four (4) copies of the revised drawings for final review.
(b) Review of shop drawings by the University shall not imply verification of dimensions, or of information that pertains solely to the fabrication process or to techniques of construction, and shall not constitute a guarantee, final acceptance, or authorization of extra work, and shall not relieve manufacturer of responsibility to comply with contract documents.

(8) Operating Instructions: Manufacturer shall include with the equipment four (4) copies of assembly and/or installation instructions, parts lists, and periodic maintenance instructions, for all equipment being purchased. These materials shall accompany the equipment and be clearly identified.

(9) Guarantee: Manufacturer shall guarantee all labor and materials for a period of one year for operation, which shall include agreement to repair, replace in location, and make good at his expense, any and all defects which may appear in his work or materials during that time which, in the judgment of the University, arise from defective workmanship or imperfect or inferior materials. The guarantee period shall start after the installation of the equipment is complete and accepted by the University.

b) Pre-Purchased Equipment:

(1) Technical data for the pre-purchased equipment and services are included herein for the benefit of the Contractor.

(2) The University, at the time of bidding and upon written request, will furnish complete pre-purchased equipment, services, specifications, purchase orders, shop drawings, and installation instructions of the pre-purchased equipment to the Contractors. Any items required for the installation, which are not included as pre-purchased equipment, will be furnished and installed by the Contractor.

(3) It shall be the responsibility of the Contractor to receive the pre-purchased equipment from the University and relocate or transport same to their ultimate location and provide all assembly as required. The Contractor shall examine the components of all equipment when they are received and beyond the time they are received by him, he shall assume all responsibility and prevent any abuse and damage during the installation period.

(4) The equipment manufacturers are responsible for exactness of all components of the equipment delivered and in the event the Contractor discovers inadequacies or missing components he shall contact the University immediately.

(5) All pre-purchased equipment and accessories shall be installed and tested in accordance with the manufacturer’s instructions and recommendations.

c) Pre-Purchased Shop Drawings:

(1) The Contractor shall submit shop drawings and layout drawings for all work, all pieces of equipment to be constructed or installed and all items to be furnished by suppliers or subcontractors. They shall be submitted as required for the satisfactory performance of all work, or as directed, save at the Contractor's own risk. Shop drawings shall include material lists, schedules and complete details. Layout drawings shall clearly indicate the location and arrangement of all pieces of equipment, machinery, apparatus, ductwork, piping connections, inserts and other items. Unless otherwise specified, or indicated on the contract drawings, drawings submitted hereunder shall be to a scale 3/8-inch to a foot, and shall be complete, giving all required information. They shall be properly checked before submission.
to the Design Professional and shall be submitted sufficiently in advance of
construction requirements to allow ample time for checking, correction,
resubmitting and rechecking.

(2) It shall be the Sheet Metal Contractor’s responsibility to have prepared double-line
detailed shop drawings in AutoCAD Release 2015 and to coordinate the layout of
ductwork with all trades to avoid interferences with structural components, partition
stalks, conduits, cable trays, sprinklers, plumbing risers, piping, light fixtures, etc.
Each trade will be responsible to prepare layout drawings on AutoCAD and submit
electronically along with prints to the Sheet Metal Contractor who shall review,
consult with each trade for changes, and jointly coordinate necessary changes.
Sheet metal ductwork, because of its bulkiness, shall take precedence. At the
conclusion of the coordination process, each trade will sign-off the documents
indicating that all conflicts have been resolved to their satisfaction. Subsequently
during the construction phase, any unforeseen changes to the work will be the
responsibility of the respective trade to accommodate all others. At the completion
of construction, each trade will incorporate all field changes on the AutoCAD data
base and submit AutoCAD .dwg (with x-refs) and Adobe .pdf electronic files on a
CD along with three (3) sets of plotted prints for record purposes as part of project
close-out documentation.
II. DIVISION 01 – GENERAL REQUIREMENTS

01 24 13 Value Engineering

1. All Value Engineering (VE) exercises for a project are to include the University Project Manager, University Facilities, Prime Contractor, and A/E. All VE substitutions will be discussed at the meeting(s) and the A/E shall confirm all VE items are in fact equivalent and in accordance with this Guide and update drawings and specifications as required and redistribute to the Project Team.

2. Prime Contractor to provide a VE log with detailed item(s) description(s) and cost savings.

3. When hydronic piping material is value engineered all associated system valves are to remain as per this guide. For example solder copper piping is revised to pro-press piping; valves do not become pro-press also.

01 35 00 Special Procedures

1. The General Contractor or Lead Sub-Contractor (i.e. Mechanical Contractor) is required to complete Construction forms, and submit to Project Manager for the University prior to any performing any utility/system shutdown and/or hot work. Refer to the Drexel University Planning, Design & Construction website (http://www.drexel.edu/facilities/design/forms/) for the forms.

01 45 33 Code-Required Special Inspections and Procedures

1. The Prime Contractor is to confirm with the City of Philadelphia in regards to the requirement for special inspections, i.e. third party steel inspection.

01 79 00 Demonstration and Training

1. Contractor is required to fully instruct the representatives of the University in all details of operation of the equipment/system installed under their contract. A minimum of two (2) training sessions on separate days are required for all equipment due to shift work at the University, see below. One (1) training session is adequate for BAS training.
 a) Tuesday at 3:15 pm.
 b) Wednesday at 7:15 am.

2. Contractor is responsible for coordinating training dates with University Project Manager and Manufacturers Representative(s) for days and times listed above.

3. All training sessions are to include hardcopies of equipment O&M manuals and a single line diagram(s) representing the system.
01 91 00 Commissioning

1. It is the Owner’s discretion for when the Commissioning process will begin on a project.

2. A/E is responsible for incorporating all necessary commissioning documentation into the construction documents. A/E will either use commissioning documentation created by the Commissioning Authority (CxA), if contracted, or the commissioning sections in this Guide.

3. The CxA, if contracted, is responsible for creating/reviewing all commissioning documentation, i.e. specifications, checklists, etc.

4. The Commissioning process is a systematic procedure for achieving, verifying, and documenting that the performance of facilities, systems, and assemblies meets defined objectives and design criteria. It shall encompass and coordinate the traditionally separate functions of system documentation, equipment startup, control system calibration, testing and balancing, performance testing and training.

 a) Commissioning Scoping Meeting:
 (1) The scoping meeting brings together all members of the design, construction, and operations team that will be involved in the commissioning process. Each building system to be commissioned is addressed, including commissioning requirements, and completion and start-up schedules. During the scoping meeting, all parties agree on the scope of work, tasks, schedules, deliverables, and responsibilities for implementation of the Commissioning Plan.

 b) Final Commissioning Plan:
 (1) The commissioning agent finalizes the draft Commissioning Plan using the information gathered from the scoping meeting. The initial commissioning schedule is also developed along with a detailed timeline. The timeline is fine-tuned as construction progresses.

 c) Design Intent Documentation:
 (1) The design requirements, relative to the building systems selected for commissioning, must be explicitly documented in order to establish a baseline of performance expectations to which the actual installed performance is compared. The commissioning provider, with the assistance of the Owner and Design Team, prepares a Design Intent Summary that documents the design intent for those building systems selected for commissioning. The Design Intent Summary reflects the underlying assumptions and requirements that become represented in the construction documents.

 d) Submittals:
 (1) The general contractor will provide the commissioning agent with a set of equipment and system submittals. This equipment data includes installation and start-up procedures, O&M data, performance data and temperature control drawings. The subcontractors, general contractor or A/E notify the commissioning agent of any new design intent or operating parameter changes, added control strategies and sequences of operation, or other change orders that may affect commissioned systems.
e) Site Observation:
 (1) The Commissioning Agent makes periodic site visits to witness equipment and
 system installations. Each site visit will have a specific agenda and will be
 coordinated with the General Contractor Site Supervisor. The Commissioning Agent
 attends selected planning and job-site meetings in order to remain informed on
 construction progress and to update parties involved in commissioning. The General
 Contractor provides the Commissioning Agent with information regarding
 substitutions or change orders that may affect commissioned equipment or the
 commissioning schedule.

f) Pre-functional Checklists and Startup Procedures:
 (1) A Pre-Functional Inspection Checklist are developed and completed for all
 equipment being commissioned. The checklist captures equipment nameplate and
 characteristics data, and confirms the as-built status of the equipment or system. The
 checklists ensure that the systems are complete and operational and document the
 installation of components and completion of systems.

 (2) The checklists are prepared by the Commissioning Agent from manufacturer’s data,
 drawings and specifications to include the required installation, checkout, and startup
 procedures. The installing Subcontractors will review the checklists and perform the
 checklists items, while the Commissioning Agent witnesses and completes the
 checklists before scheduling the functional performance testing.

g) Development of Functional Test and Verification Procedures:
 (1) Functional performance testing verifies the intended operation of individual
 components and system interactions under various conditions and modes of
 operation. The systems are run through all of the sequences of operation and the
 response of components is verified. Testing proceeds from components to
 subsystems to systems, and finally to interlocks and connections between systems.

 (2) The Commissioning Agent prepares functional performance test plans so that the
 complete sequence of operations is included. The Commissioning Agent obtains all
 documentation, including an updated points list, control sequences, and setpoints. If
 necessary, the commissioning agent may request clarifications from contractors and
 the design team regarding sequences and operation. Prior to execution, the
 Commissioning Agent provides a copy of the primary equipment tests to the
 installing Subcontractor and General Contractor who can review the tests for
 feasibility, safety, warranty and equipment protection.

h) Execution of Functional Testing Procedures:
 (1) The Commissioning Agent schedules functional tests through the General Contractor
 and Subcontractors. Under the supervision of the Commissioning Agent, the
 installing Subcontractor performs the hardware and/or software manipulations
 required for the testing. The Commissioning Agent witnesses and records the results
 of functional performance testing.

 (2) Any deficiencies found from functional performance testing will be documented in a
 Deficiency Report. The report will include all details of the components or systems
 found to be non-compliant with the parameters of the functional performance test
 plans and design documents. The deficiency report will become part of the punch
 list. The report will detail the adjustments or alterations required to correct the
 system operation, and identify the responsible party. The deficiency report will be
continuously updated. The commissioning agent schedules any required retesting through the general contractor. Decisions regarding deficiencies and corrections are made at as low a level as possible, preferably between Commissioning Agent, Subcontractor and General Contractor.

i) Short-Term Diagnostic Monitoring:
 (1) Short-term diagnostic testing, using data acquisition equipment or building automation system trends to record system operation over a two to three week period, may be used to investigate the dynamic interactions between components in the building system.
 (2) The monitoring occurs after occupancy to evaluate the building systems’ performance under natural occupancy and ambient load conditions. The objectives of the monitoring are to evaluate scheduling, the interaction between heating and cooling, and the effectiveness of the system in meeting the comfort requirements of the occupants.

j) Operations and Maintenance Manuals:
 (1) The operation and maintenance manuals prepared by the Contractors for the Owner’s Maintenance Personnel are reviewed for completeness. The Contractors are encouraged to submit O&M manuals at the earliest possible date. Materials may be added, or requested from the Contractors, to stress and enhance the importance of system interactions, troubleshooting, and long-term preventative maintenance and operation. A database of preventative maintenance information may also be created from the materials in the O&M manuals.

k) Training and Orientation of Owner Personnel and Occupants:
 (1) Effective Maintenance Personnel training is critical to the long term performance of the new building. The Commissioning Agent will assist the Owner and General Contractor in organizing the training sessions by identifying the appropriate staff for each session and creating an overall training plan.
 (2) For each training session, the Contractors provide a detailed agenda for each piece of equipment or system for which training is required. The agenda describes the training scope, duration, and methods, along with the name and qualifications of the trainers. The Commissioning Agent develops a plan for including in the training session Contractors / Trainers from different disciplines, when appropriate. The trainer documents each training session (duration, general subjects covered, and attendees). The Commissioning Agent may witness any of the training sessions.

l) Warranty Period:
 (1) Seasonal variation in operations or control strategies may require additional testing during peak cooling and heating seasons to verify system performance. During the warranty period, seasonal testing and other deferred testing is completed as required to fully test all sequences of operation. The Commissioning Agent coordinates this activity. Tests are executed and deficiencies corrected by the appropriate Subcontractors, witnessed by the Commissioning Agent. Any final adjustments to the O&M manuals and as-builts due to the testing are made.
 (2) The Commissioning Agent will request input from the Owner’s Facilities Staff and Occupants about the performance of the building systems at month ten (10) of the one (1) year Contractor warranty. The Commissioning Agent also supports the General Contractor’s troubleshooting process during the warranty period. The
General Contractor’s warranty team will first try and resolve the issues before requesting assistance from the Commissioning Agent.

m) Commissioning Report:

(1) A final Commissioning Report will be compiled which summarizes all of the tasks, findings, and documentation of the commissioning process. The report will address the actual performance of the building systems in reference to the design documents. All test reports by various Subcontractors, manufacturers and controlling authorities will be incorporated into the final report. The commissioning report includes:

(a) An evaluation of the operating condition of the systems at the time of functional test completion.
(b) Deficiencies that were discovered and the measures taken to correct them.
(c) Functional test procedures and results.
(d) Reports that document all commissioning field activities as they progressed.
(e) A description and estimated schedule of required deferred testing.
III. DIVISION 02 – EXISTING CONDITIONS

02 24 00 Environmental Assessment

Hazardous Building Materials: It is expected that hazardous materials, including lead based painted substrates and asbestos containing building materials will be encountered in the work.

1. Lead Based Painted Substrates:
 a) Management of impacts to lead-based painted surfaces will be the responsibility of the Bidder by following the lead contamination mitigation & decontamination – Scope of Work, as outlined below:
 (1) The Bidder must exhibit expertise in the proper control of lead dust for all project work activities involving the impact of lead contaminated materials and/or debris by submitting dust control plans to the Department of Environmental Health and Safety for review prior to the initiation of project activities. Dust control methods shall include but not limited to the use of containments, HEPA vacuum tool attachments, air filtration devices, sealed dust tight controls for trash chutes and collection dumpsters, and housekeeping.
 (2) Decontamination:
 (a) All non-porous surfaces shall be decontaminated by HEPA vacuuming and tri-sodium phosphate (TSP) wiping/mopping including, but not limited to: ceilings, walls, windows, floors, doors, light bulbs and fixtures, furniture, unit vents and miscellaneous items.
 (b) All porous surfaces, including but not limited to: furniture and carpet shall be moved back or relocated from the work area to avoid contamination.
 (c) Material Safety Data Sheets (MSDS) shall be provided to the Department of Environmental Health and Safety prior to the initiation of project activities.
 (3) Disposal Requirements:
 (a) Strict control of the construction debris must be maintained during all activities of this project.
 (b) Lead contaminated debris can be disposed in the following three manners:
 (i) Perform characterization test on the debris using the Environmental Protection Agency’s Toxicity Characteristic Leaching Procedure. If the test results are below the EPA limit then the material can be disposed as construction debris at a C&D facility.
 (ii) Dispose directly as hazardous in accordance with 40 CFR (Code of Federal Regulation) Parts 260 to 265 and PA 25 Article VII Hazardous Waste Management,
 (iii) For materials with a highly innate lead content that can be removed and disposed of in entirety, such fan units and skylights; materials must be recycled.
*Note if Option 1 is chosen as the method of disposal, TCLP results are required to be provided to the Department of Environmental Health and Safety for review prior to the actual disposal of any materials.
(4) Project Oversight:
 (a) The Department of Environmental Health and Safety will oversee the project until completion. The oversight will include but is not limited to environmental air and wipe sampling, ensuring compliance of proper dust control, cleaning effectiveness and disposal methods.
 (b) Any cleanup required resulting from the spread of lead contamination will be charged to the Bidder.

2. Asbestos Containing Building Materials:
 a) No touching, clamping, connecting, drilling, coring, or unauthorized abatement of any asbestos containing building material may occur.
 b) All asbestos abatement work activities, with the exception of caulking materials and roof components must be conducted by a licensed asbestos abatement contractor/vendor contracted, coordinated and scheduled through the Department of Environmental Health and Safety. Caulking materials and roof components must be removed by the University standard operating procedure (SOP) following OSHA Class II Training Requirements.
 c) If any asbestos containing building materials are accidently impacted and/or disturbed, the contractor must call the 24-hour emergency hotline at 215-895-2222 to initiate the proper emergency response from University personnel.

3. Asbestos Containing Caulks and Roof Components:
 a) All work involving asbestos containing caulks and/or roofing materials must be performed in accordance with 29 CFR 1926.1101.
 b) The contractor must provide the name, contact information, and the training documentation of the Contractor’s designated “competent person” as defined by 29 CFR 1926.1101 to the Department of Environmental Health and Safety prior to starting the project. The training must be in accordance with the 29 CFR 1926.1101 Competent Person training requirements.
 c) The Contractor must provide the training documentation for all personnel performing asbestos containing caulks and/or roofing material removal to the Department of Environmental Health and Safety prior to starting the project. The training must be in accordance with the 29 CFR 1926.1101 Class II training requirements.
 d) During project activities the Contractor will be required to conduct exposure assessments and daily air monitoring checks in the regulated area, unless a negative exposure assessment for the entire operation already exists and nothing has changed. Exposure assessment data must be provided to the Department of Environmental Health and Safety for evaluation. If monitoring shows exposure below the Permissible Exposure Limit (PEL) and Short Term exposure Limit (STEL) than the Department of Environmental Health and Safety may allow the Contractor to discontinue monitoring.
 e) During the project, the Contractor’s “competent person” must inspect the job site often enough to assess changing conditions and upon request by the Department of Environmental Health and Safety. The job site inspection must be documented.
 f) Contractor must mark off all regulated areas. A regulated area is the site where the Contractor employee’s works with asbestos, including any adjoining area(s) where debris and waste from asbestos work accumulates or where airborne concentrations of asbestos exceed or can possibly exceed the PEL. Posted warning signs demarcating the area must
be easily readable and understandable. The signs must bear the following information:

DANGER
ASBESTOS
CANCER AND LUNG HAZARD
AUTHORIZED PERSONNEL ONLY
RESPIRATORY AND PROTECTIVE CLOTHING ARE REQUIRED IN THIS AREA

g) The removal of asbestos containing caulks and/or roofing materials must be performed in accordance with 29 CFR 1926.1101 and as outlined below: Remove the material intact. If material cannot be removed intact notify the Department of Environmental Health and Safety.

1. Wet methods shall be used to remove caulks and roofing materials that are not intact, or that will be rendered not intact during removal, unless such wet methods are not feasible or will create safety hazards.
2. Cutting machines shall be continuously misted during use, unless a competent person determines that misting substantially decreases worker safety.
3. When removing built-up roofs with asbestos-containing roofing felts and an aggregate surface using a power roof cutter, all dust resulting from the cutting operation shall be collected by a HEPA dust collector, or shall be HEPA vacuumed by vacuuming along the cut line. When removing built-up roofs with asbestos-containing roofing felts and a smooth surface using a power roof cutter, the dust resulting from the cutting operation shall be collected either by a HEPA dust collector or HEPA vacuuming along the cut line, or by gently sweeping and then carefully and completely wiping up the still-wet dust and debris left along the cut line.
4. Asbestos-containing materials shall not be dropped or thrown to the ground. Unless the material is carried or passed to the ground by hand, it shall be lowered to the ground via covered, dust-tight chute, crane or hoist.
5. Any ACM that is not intact shall be lowered to the ground as soon as is practicable, but in any event no later than the end of the work shift. While the material remains on the roof it shall either be kept wet, placed in an impermeable waste bag, or wrapped in plastic sheeting.
6. Intact ACM shall be lowered to the ground as soon as is practicable, but in any event no later than the end of the work shift.
7. Upon being lowered, unwrapped material shall be transferred to a closed receptacle in such manner so as to preclude the dispersion of dust.
8. Roof level heating and ventilation air intake sources shall be isolated or the ventilation system shall be shut down.

h) Alternative methods of removing, handling or storing asbestos containing caulks and/or roofing materials will be addressed on a case by case basis. All such requests must be submitted in writing and approved by the Department of Environmental Health and Safety.

i) The Department of Environmental Health and Safety reserves the right to stop the project upon observing non-compliant activities.
IV. DIVISION 05 – METALS

05 12 00 Structural Steel Framing

1. All structural platforms, grating, and dunnage are to be in accordance with OSHA regulations. Refer to section 07 71 00 for further documentation.

05 51 33 Metal Ladders

1. All ladders (metal, fiberglass, wood, etc.) are to be ANSI rated; Grade 1, Type IAA, 375 pounds special duty.

2. Alternating tread stairs are prohibited.

05 52 13 Pipe and Tube Railings

1. To limit number of penetrations through an existing or new roof, Architect to consider using a non-penetrating guardrail system with architectural appeal. The guardrail shall meet or exceed the following criteria:
 a) OSHA Regulations for Fall Protection.
 b) Sightlines.
 c) Self-supporting.
 d) Manufacturer’s installation requirements.

2. Basis of Design: BlueWater Manufacturing, SafetyRail 2000 Architectural Series, Incline Stanchion model. Architect to present substituted manufacturer(s) to University Facilities and Environmental Health and Safety Departments for Approval.
V. DIVISION 07 – THERMAL AND MOISTURE PROTECTION

07 26 00 Vapor Retarders

1. A/E is to coordinate vapor barrier design when chilled beams are designed as the primary HVAC system. Refer to Section 23 82 14, Chilled Beams, for chilled beam design requirements.

07 55 54 Thermoplastic Protected Membrane Roofing

1. All new and completely renovated roofs are to be a thermoplastic polyolefin (TPO) roofing membrane with required accessories. A/E is to coordinate with roofing manufacturer to select appropriate components. TPO color to be white.

07 71 00 Roof Specialties

2. A/E is to design roof protection in the form of parapets, railings, or tie-off points. All protection will be in accordance with OSHA regulations. A/E to coordinate with University Project Manager and Environmental Health and Safety Department.

3. Skylights construction to be able to withstand 200 lbs. of downward force or have a 42 inch parapet. If the construction does not have one of these features then the skylights will need to have a railing or skylight screen that can withstand 200 lbs. of downward force.

07 72 13 Manufactured Curbs

1. All equipment roof curbs are to be as per equipment manufacturer or The Pate Company.

2. General Contractor is to verify that all equipment roof curbs are installed level, in line and at the correct height prior to mounting equipment.

3. All pipe penetration roof curbs are to be as per The Pate Company with a graduated step assembly boot.

07 84 00 Firestopping

1. Install firestop systems where required by applicable code at openings through one side of a fire resistance rated wall, roof/ceiling, or floor/ceiling assembly, made to accommodate electrical, mechanical, plumbing, environmental, and communication systems.

2. Each system shall be designed and installed in accordance with the latest edition of the applicable Standards, including, but not limited to:
 a) NFPA Standards.
 b) Underwriters Laboratory, Inc. (UL):
 (1) ANSI/UL1479, “Fire Tests of Through Penetration Firestops”.
 (2) ANSI/UL2079, Tests for Fire Resistance of Building Joint Systems”.
c) American Society for Testing and Materials (ASTM):
 (1) ASTM E-814, “Fire Tests of Through Penetration Fire Stops”.
 (3) ASTM E-119, “Fire Tests of Building Construction and Materials”.

3. Performance criteria:
 a) Systems shall be capable of preventing passage of smoke, flame, and hot gases sufficient to ignite cotton waste, when tested in accordance with ASTM E119.
 b) Where systems are exposed to view, traffic, moisture, and physical damage, provide products that do not re-emulsify, dissolve, leach, breakdown or otherwise deteriorate when exposed to such conditions.
 (1) At piping penetrations for plumbing and wet-pipe sprinkler systems, provide moisture-resistant through-penetration firestop systems.
 (2) At floor penetrations with annular spaces exceeding 4 inches wide and exposed to possible loading and traffic, provide firestop systems capable of supporting floor loads, by installing floor plates or by other means.
 (3) At penetrations involving insulated piping, provide through-penetration firestop systems not requiring removal of insulation. Provide products appropriately tested for the thickness and type of insulation utilized.
 c) Materials shall be compatible with one another and with other items with which they may come in contact, and shall not cause corrosion of penetrating items.
 d) Materials shall be free of solvents, asbestos or PCB's, and non-toxic to human beings at all stages of application and during fire conditions.
 e) Materials shall remain sufficiently flexible after installation to accommodate expected vibration and movement between penetrating items and rated building components or assemblies; or between adjacent building components or assemblies at joint systems. Materials shall not shrink noticeably after installation.
 f) Provide fire-resistive joint sealants designed to accommodate a specific range of movement and tested for this purpose in accordance with cyclic movement test criteria as specified in Standards, ASTM E-1399, ASTM E-1966 or ANSI/ UL 2079.
 g) Provide fire-resistive joint systems subjected to an air leakage test conducted in accordance with Standard, ANSI/ UL2079 with published L-Ratings for ambient and elevated temperatures as evidence of the ability of the fire-resistive joint system to restrict the movement of smoke.
 h) Caulk, foam, mortar, and putty materials shall be autobonding to permit changes to penetrating items.
 i) Through penetration firestop systems provided shall be listed in the UL Fire Resistance Directory, or other approved testing agency, and shall be appropriate for intended use.

4. Contractor is responsible for firestopping all opening in the construction area.

5. Approved manufacturers are Hilti, Inc., 3M Fire Protection Products, Tremco, or approved equal.
VI. DIVISION 08 – OPENINGS

08 71 00.1 Door Hardware – Academic, Maintenance and Business Facilities ONLY

Incorporate, by reference, Divisions 8 into Division 26 and 28.

1. General:
 a) The purpose of this section is to support the University Facilities design Guide for door hardware and keying, and were originated for new building and renovation projects to provide a required level of quality and performance. University Facilities maintains the following hardware and is currently stocking replacement parts. The products listed in this section are limited and shall be specified NO SUBSTITUTIONS on new construction and renovation projects. In the event that acceptable alternates are allowed, they will be specifically listed within the applicable section.
 b) It is the intent of this specification to provide guidelines for the Architect's specification section 08 71 00, for product groups and the hardware schedule. It is the responsibility of the Architect and their specification writer to coordinate all specified hardware to meet applicable building codes, life safety codes, third party certifications and ADA requirements.
 c) A/E and Contractor will contact the University’s Door Hardware Consultant for the formulation of project hardware specifications, review of substitution request and submittal review. ASSA ABLOY will provide hardware specification services to A/E firms on behalf of the University, when A/E firm is contracted for University non-housing projects. ASSA ABLOY contacts are provided below in section 1.e.
 d) Openings, with historic relevance, may require doors, frames and hardware to be refurbished. Contractor and Supplier will be responsible to field verify existing conditions and refurbish or replace material in a style and quality that matches as closely. Renovation projects may involve other considerations and should be reviewed with University Facilities and their consultants.
 e) Contact information:
 (1) David Priest, University Specialist
 (a) ASSA Abloy Door Security Solutions Tri-State.
 (b) Phone number: 570-991-5203.
 (c) Email: dpriest@dsstristate.net.
 (2) Fred Spratt, Architectural Manager
 (a) ASSA Abloy Door Security Solutions Tri-State.
 (b) Phone number: 215-307-0428.
 (c) Email: fspratt@dsstristate.net.

2. Design Criteria:
 a) Whenever possible, design openings for either a 90° or 180° swing. If the available wall space is not wide enough to allow for 180° of swing (i.e.-stairwell), widen the opening to allow the doors to swing at approximately 90° - 110° to the wall. Design adjacent walls as necessary to ensure the degree of swing allows for use of floor or wall stops. See illustration examples below:
b) Whenever possible, design banks of single doors with rim exit devices rather than pairs. In banks of doors, schedule one pair for moving larger items, and the balance as single doors. If large items must be moved through a paired opening, specify surface vertical rod exit devices with two rod guides per rod, equally spaced. Do not specify Conventional or Key Removable Mullions on paired openings.

c) All Mechanical Room, Electrical Room, Tele/Data Closets and Janitor Closets require the following door hardware: Door closer, latch guard and Storage room function lock.

d) Laboratory doors from common spaces require a card reader for access. Refer to section 28 10 00 for card reader specifications.

3. Technical Standards:
 a) Specify degree of opening and ensure coordination for every door, called out by individual door in submittals, and confirmed in the field regardless of the door opening layout illustrated on the plans. It is not acceptable to install hardware based upon floor plan illustrations of door swing, but shall be coordinated in the submittal phase and be optimum for the prevailing conditions at the opening. Any degree of opening that is in question shall generate an RFI submission and be resolved prior to any hardware being installed.

 b) Finish hardware shall be installed in accordance with manufacturer's recommended methods for installation and pertinent codes and regulations.

 c) Specify that a Pre-Submittal Conference be conducted to coordinate compliance with requirements in Division 01 Section "Project Meetings" with attendance by representatives of Supplier(s), Installer(s), Contractor(s), University Project Manager and University Facilities to review proper methods and the procedures for receiving, handling, and installing door hardware. Requirements are:

 1) Prior to installation of door hardware, arrange for manufacturers' representatives to hold a project specific training meeting to instruct the installing contractors' personnel on the proper installation and adjustment of their respective products.
Product training to be attended by installers of door hardware (including electromechanical hardware) for aluminum, hollow metal and wood doors. Training will include the use of installation manuals, hardware schedules, templates and physical product samples as required.

(2) Inspect and discuss electrical roughing-in, power supply connections, and other preparatory work performed by other trades.

(3) After installation of all door hardware, arrange for manufacturers’ representatives to accompany the project architect during punch list review to confirm installation accuracy and compliance with specification and manufacturer’s directives. A punch list of action items will be produced by the manufacturer’s representative and the architect for correction, and will be confirmed on site once corrections have been made.

(4) A project specific training meeting to instruct the installing contractors' personnel on the proper installation and adjustment of their respective products be scheduled prior to hardware installation.

(5) Review the required inspecting, testing, commissioning, and demonstration procedures.

d) Specify that all door openings shall have a stop, and that it is the intention of the specification that an appropriate stop be provided for every opening, regardless of its presence in the hardware sets.

e) Specify hardware sets consistent with requirements detailed herein. Require qualified supplier to develop hardware schedule.

f) Finish hardware shall be furnished with necessary screws, bolts, and other fasteners of proper size, type, and finish recommended by the manufacturer to securely anchor hardware in position for long life under hard use.

g) Fasteners shall be furnished with toggle bolts, expansion shields, sex bolts, and other anchors which are suitable for installation in materials to which finish hardware is applied, and as recommended by the hardware manufacturer.

h) Three (3) “push in” silencers shall be installed on strike-side of each single door frame stop; install two (2) silencers on head of double door frame stop.

i) Exposed fasteners shall harmonize with hardware as to material and finish.

j) Coordinate specification of new hardware with existing.

k) Specify matching finishes of new and existing hardware.

l) All doors are to be provided with surface mounted vertical rods with covers. Removable mullions are prohibited.

4. Continuous and Butt Hinges:

a) Specify Markar FM300 x 630 heavy duty concealed leaf (edge mount) stainless steel continuous hinges on all exterior aluminum and FRP doors and interior stairwell doors. Acceptable alternates are equivalent products by Hager and McKinney

b) Specify McKinney T4A3386 heavy duty five (5) knuckle stainless steel based full mortise bearing hinges on all high use doors; including classroom, bathroom, and corridors. Hinges to match the finish of the balance of the hardware. Acceptable alternates are equivalent products by Hager and Stanley.
c) Specify standard duty five (5) knuckle butt hinges on infrequently used doors including mechanical rooms, offices, closets and administration areas similar to McKinney TA2714. Hinges to match the finish of the balance of the hardware. Acceptable alternates are equivalent products by Hager and Stanley.

d) Specify NRP non rising pins for all interior and exterior steel outswing doors.

e) Specify stainless steel hinges and pins at exterior locations, boiler rooms, kitchens, swimming pools, and other wet atmosphere areas.

f) Specify that any existing special locking or security devices removed during alteration work shall be reinstalled.

g) Indicate all modifications of exterior door sill substrates, if necessary to accommodate proper installation of threshold.

h) Specify that the hardware installers be certified installers and attend an installation seminar provided by the manufacturer’s representative.

i) Specify that Contractor provide instruction to University personnel about adjustment and maintenance of hardware.

j) Specify submission of manufacturer representative's contact information, email address and telephone number for each type of hardware installed, to University field inspector, as part of close-out submittals package.

5. Locksets:

 b) Specify NZD Lever Trim.

 c) Specify US26D/626 Finish.

 d) All locksets shall be specified with Quick Code CT6 – Corbin Russwin format Interchangeable Core with Temporary Construction Core.

 e) Large format.

 f) Standard functions specified:
 (1) CL3310 Passage.
 (2) CL3320 Privacy.
 (3) CL3351 Entrance.
 (4) CL3355 Classroom.
 (5) CL3357 Storeroom, including Mechanical Room, Electrical Room, Tele/Data Closets and Janitor Closets.

 g) Security combination lockset to be Simplex LR1021C-26D-41. RH pushbutton lever with Corbin Russwin keyway.

6. Cylinders and Keys:
 a) Specify Medeco X4 Patented Cores in Corbin Russwin Interchangeable Core format keyed to the existing University system.

 b) For non-housing, academic, maintenance and business spaces, specify the 6 pin Medeco X4 32*2301 Corbin Russwin format interchangeable core.

 c) Cores shall be installed by the Contractor per the approved door hardware and keying schedule unless otherwise directed by the owner in writing.
d) All cores shall be factory master-keyed by Medeco, unless otherwise directed in writing by University Management. University reserves the sole right to interpret, add, delete, or modify all provisions of the keying process to meet the specific needs of the University. Local or field keying by a distributor or supplier is unacceptable and will be rejected outright.

e) Provide temporary keyed construction cores for the contractors and owners use during construction – Corbin Russwin Quick Code CT6. Upon substantial completion, Contractor shall remove all construction cores and coordinate/achieve final keyed core installation, and further coordinate with University so that security of lockable spaces within the project site security is not compromised.

f) All codes and bittings, or any intellectual property related to the substance of said key system shall remain the property of University.

g) Provide six (6) masterkeys for each masterkey set. Provide three (3) change keys and two (2) blanks for each change key assigned. Provide two (2) control keys for core removal. Stamp keys with DHI standard visual key control identifier. If University does not require three (3) change keys for some cores (numerous cores keyed alike, etc), on a project, provide the balance of the keys as blanks per Owner’s request.

h) For every project with one hundred (100) cores or more, provide two (2) extra Medeco X4 Key Blanks per core.

i) The supplier shall be a Medeco factory authorized distributor that is approved by Medeco to purchase direct. Obtain a Blanket Letter of Authorization from Medeco authorized University personnel on University letterhead allowing said distributor to order for a specified period of time without a letter accompanying each order, as long as the products are drop shipping directly to University. Contractor shall verify presence of all ordered components in the presence of designated University personnel to ensure there are no shortages, and if so, they are properly documented and corrected. Key blanks shall only be shipped to authorize personnel at University upon written documentation and for a specified number of cores/keys/blanks for the project only.

j) As soon as possible after final approval and ordering of the door hardware, contact the Architect, appropriate University personnel, and Medeco factory representative with a minimum two week advance notice to schedule a keying meeting. The Medeco representative shall attend the keying meeting at the request of University. Conduct additional keying meetings if required. Upon completion of the proposed keying schedule, forward it to the Architect and University for final confirmation prior to ordering.

k) Medeco Representatives:

(1) Phil Kindler, Director of Sales
 (a) ASSA Abloy Door Security Solutions Tri-State.
 (b) Phone number: 570-592-2824.
 (c) Email: pkindler@dsstristate.net.

l) Deliver all permanent key blanks and other security keys direct to Medeco registered University representative from manufacturer via secure courier, return receipt requested.

m) Provide copy of all bittings, bitting list expansions, keyholders and locations on disc for direct importation into KeyWizard software. All information shall conform to KeyWizard Factory Key System Import Template, Keyholder Import Template and Location Import Template.
n) Failure to properly comply with these requirements may be cause to require replacement of all or any part of the cylinders and keys involved as deemed necessary at no additional cost to the University. Any deviation from specified requirements shall be deemed defective material and rejected outright.

o) If Mortise cylinder is required for special installation the University requires the following:
 (1) Corbin Russwin model 1070-112 A01-x626 – IC Mort. HSG x clover x 6 pin.
 (2) Corbin Russwin model 3070-178-6x626 – IC rim cyl. less core, 6 pin.

7. Exit Devices:
 a) Specify Von Duprin 99 Series rim exit devices on all exterior single doors.
 b) Specify Von Duprin 99 Series Surface Vertical Rod exit devices on all exterior and interior pairs of doors. Specify two (2) rod guides per rod – equally spaced.
 c) Specify devices with cylinder dogging on all non-rated openings.
 d) Specify 996L Trim with Corbin Russwin cylinder and cylinder collar as required.
 e) Specify 316 Stainless Steel pulls only at doors with cylinders at main entrances. Use of 304 Stainless Steel is unacceptable.
 f) Specify surface vertical rod exit devices, less bottom rod, on interior pairs of doors that are less than 64 inches in width. Specify two rod guides per rod - equally spaced.
 g) Specify true architectural brass, bronze, chrome or stainless steel finishes. Stainless steel shall be specified unless the finish is otherwise noted.
 h) Coordinate cylinder collars with exit device trim to ensure compatibility.

8. Door Closers:
 a) Specify LCN 4040XP closers – NO SUBSTITUTIONS.
 b) Specify Top Jamb mount and Heavy Duty OH stop on all Main Entrances. Specify that all necessary support brackets and spacer blocks are included as required by opening.
 c) Specify Heavy Duty Rigid Parallel arms whenever possible.
 d) Do not specify stop arms of any type on closers - all interior doors shall swing 90°-100° or 180° degrees into an adjacent wall.
 e) Closers are to be thru bolted to the doors.

9. Stops and Holders:
 a) Specify cast wall and floor stops for each door. All doors shall be furnished with an auxiliary stop. An overhead, wall or floor stop, shall be furnished whether scheduled or not, and as is found typically scheduled in the balance of the hardware sets. If no door stop is scheduled (or if no specialized auxiliary door closer arm is listed), supplier shall provide an auxiliary stop, overhead, wall (or floor) stop for every door, which opens and impacts or opens into any fixed structure.
 b) Specify Wall stops that have a metal encased rubber design with an anti-vandal feature that incorporates an imbedded steel washer in the rubber portion to prevent the bumper from being removed from the wall. All exposed fasteners shall be Security Torx type.
 c) Specify Universal Dome floor Stop that is capable of stopping a door in both a low rise and a high rise condition. Floor stops shall have the lip of a low rise bumper and the dome of a high rise bumper.
d) Specify magnetic holders that are capable of holding a door in a floor or wall application has a triple voltage coil that has the capability of working with 12, 24 or 120 Vac/dc and has an assortment of extensions that may be used to accommodate various applications.

10. Door Bolts and Coordinators:
 a) Specify BHMA grade 1 flush bolts and surface bolts as required for non-labeled openings. Specify self-latching flush bolts to comply with labeled fire door requirements. Use of automatic flush bolts is prohibited.
 b) Specify a 24 inch flush bolt rod at bottom, and a 12 inch rod at top for doors up to 84 inches. Specify longer rods as necessary for taller doors.
 c) Specify door coordinators with carry bars and closer mounting brackets where self-latching flush bolts are used.

11. Door Trim:
 a) Specify vandal resistant trim on exterior Hollow Metal doors, which have an exit device on the inside and require re-entry with a key by cylinder.
 b) Pulls should be thru-bolted directly to the exit device.
 c) Specify Push plates that are 6 inch x 16 inch and beveled on four sides.
 d) Specify Pulls that are a minimum of 8 inches in length and mounted with a 4 inch x 16 inch push plate.
 e) Specify pulls that are ADA compliant.

12. Protective Trim:
 a) Specify kick plates as stainless steel, on hollow metal doors and on wood veneer doors. Kickplates to be 8 inches high, 0.050 thickness and beveled on four sides.
 b) Specify armor plates on areas that require extra protection from door damage including loading dock areas, kitchen areas or any place doors are subject to damage from carts and hand trucks. Armor plates are to be 36 inches tall or as label requirements dictate 0.050 thickness and beveled on four edges.

13. Weatherstrip:
 a) Specify 1/4 inch high, aluminum thresholds with a surface applied stop lip containing a neoprene bulb insert on all exterior openings. Threshold shall be a minimum of 6 inch in width. Set applied strip in a bed of sealant.
 b) Specify 1/4 inch high flat thresholds on all interior stair tower doors. Thresholds to be as wide as the frame depth.
 c) Specify rigid jamb aluminum weatherstrip, with a neoprene bulb, at all exterior openings. Weatherstrip shall have the ability to be adjusted and cover gaps up to 1/8th of an inch.
 d) Specify stick-on weather-strip on all mullion faces where they come in contact with the door.
 e) Specify rigid aluminum sweeps with a brush seal and ability to cover gaps up to 1/2 of an inch.
 f) Specify 2 inch projecting aluminum rain drip caps on all exterior doors that are not under cover.
 g) Specify the finish of the weather-strip to coordinate with the door and frame color.
14. Acceptable Manufacturers:
 a) Acceptable manufacturers listed are subject to compliance with the requirements of this
document and must meet the criteria of the standards as listed herein. Manufacturers
offering products that may be incorporated in this work shall reflect the standard of the
University and are limited to the following:
 (2) Continuous Hinges: Markar, McKinney, Hager.
 (8) Magnetic Holders: Rixson, Sargent, LCN.
 (9) Electric Strikes: HES, Folger Adam, Von Duprin.
 (10) Electronic Accessories: Sargent, Securitron.
08 71 00.2 Door Hardware – Housing (Fraternities and Dorms) ONLY

1. General:
 a) The purpose of this section is to support the University Housing building standards for door hardware. The University Housing maintains the following hardware and is currently stocking replacement parts. The products listed in this section are to be used without substitution on new construction and renovation projects unless products are listed in this section as an alternate.

 b) It is the intent of this specification to provide guidelines for the Architect's specification section 08710, for product groups and the hardware schedule. It remains the Architect's responsibility to coordinate these products to meet the applicable building codes, life safety codes, and ADA requirements.

 c) Door and Frame Preparation: Before hardware installation, verify that all doors and frames are properly prepared to receive the specified hardware. Hollow metal frames shall be prepared for ANSI strike plates per A 115.1-2 (4-7/8" high), hinge preps will be mortised and reinforced with a minimum of 10 gauge reinforcement material; minimum of 14 gauge reinforcement material for closer. Hollow metal doors shall be properly prepared and reinforced with a minimum of 16 gauge material for either mortised or cylindrical locks as specified. It is preferred that all hollow metal doors receiving door closers have 14 gauge reinforcement. If this is not possible, the use of sex bolts is mandatory. Wood doors shall be factory prepared to receive the scheduled hardware.

 d) Hardware Installation: The manufacturer's representative for the locking devices and closing devices must inspect and approve, in writing, the installation of their products. Hardware installed incorrectly must be reported to the architect prior to the architect's final punch list.

 e) All doors are to be provided with surface mounted vertical rods with covers. Removable mullions are prohibited.

 f) All Mechanical Room, Electrical Room, Tele/Data Closets and Janitor Closets require the following door hardware: Door closer, latch guard and Storage room function lock.

<table>
<thead>
<tr>
<th>Description</th>
<th>Manufacturer</th>
<th>Model / Series</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanging Devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortise Hinge:</td>
<td>Stanley</td>
<td>FBB199 Doors over 36" as required.</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FBB191 Doors up to 36".</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FBB168 Interior Doors over 36".</td>
<td>652</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FBB179 Interior Doors up to 36".</td>
<td>652</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NRP (Non-Removable Pin) on hinges at all Reverse bevel locked Doors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Security Tone fasteners.</td>
<td></td>
</tr>
<tr>
<td>Alternate:</td>
<td>Hager</td>
<td>BB1199 Doors over 36" as required.</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BB1191 Doors up to 36".</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BB1168 Interior Doors over 36".</td>
<td>652</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BB1279 Interior Doors up to 36".</td>
<td>652</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NRP (Non-Removable Pin) on hinges at all Reverse bevel locked Doors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Security Tone fasteners.</td>
<td></td>
</tr>
</tbody>
</table>
Alternate: McKinney

<table>
<thead>
<tr>
<th>Description</th>
<th>Manufacturer</th>
<th>Model / Series</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Hinge:</td>
<td>Stanley</td>
<td>661HD, 662HD</td>
<td>628</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Exterior door openings.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Security Tone fasteners.</td>
<td></td>
</tr>
</tbody>
</table>

Securing Devices

<table>
<thead>
<tr>
<th>Lock Set:</th>
<th>Best</th>
<th>93K x 15D Trim</th>
<th>826</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock Function</td>
<td>AB</td>
<td>Entrance Lock or Office</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>Classroom Function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Storeroom Function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Passage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>Privacy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provide lock functions as required for project as appropriate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provide “LM” Lost Motion levers.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mortise Lock Set:</th>
<th>Best</th>
<th>45H x 15R Trim</th>
<th>626</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock Function</td>
<td>A</td>
<td>Entrance Lock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>Classroom Function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Storeroom Function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Passage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>Privacy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provide lock functions as required for project as appropriate.</td>
<td></td>
</tr>
</tbody>
</table>

| Cylindrical Deadlock: | Best | BT (functions as required). | 626 |

| Mortise Deadlock: | Best | 48H (functions as required). | 626 |

Cylinders:	Best	Mortise 1E74 x RP3 x cam required.	626
		Rim 1E72 x RP.	626
		• No Substitutions.	

Key System:	Best	Removable/Interchangeable Core	626
		7-pin "Patented MX8" Existing Best key system and New Systems.	
		2 keys per lockset.	
		All Locksets and cores must be of the same manufacturer.	
		• Provide keys with "Serialization" key control.	
		• No Substitutions.	
Exit Device: Von Duprin

- Specify Von Duprin 99 Series rim exit devices on all exterior single doors.
- Specify Von Duprin 99 Series Surface Vertical Rod exit devices on all exterior and interior pairs of doors. Specify two (2) rod guides per rod – equally spaced.
- Specify devices with cylinder dogging on all non-rated openings.
- Specify 996L Trim with Corbin Russwin cylinder and cylinder collar as required.
- Specify 316 Stainless Steel pulls only at doors with cylinders at main entrances. Use of 304 Stainless Steel is unacceptable.
- Specify surface vertical rod exit devices, less bottom rod, on interior pairs of doors that are less than 64 inches in width. Specify two rod guides per rod - equally spaced.
- Specify true architectural brass, bronze, chrome or stainless steel finishes. Stainless steel shall be specified unless the finish is otherwise noted.
- Coordinate cylinder collars with exit device trim to ensure compatibility.

<table>
<thead>
<tr>
<th>Description</th>
<th>Manufacturer</th>
<th>Model / Series</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator:</td>
<td>Rockwood</td>
<td>1600 Series x mounting brackets as required.</td>
<td>600</td>
</tr>
<tr>
<td>Alternate:</td>
<td>Ives</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use coordinator where required by fire code.</td>
<td></td>
</tr>
<tr>
<td>Flush Bolts:</td>
<td>Rockwood</td>
<td>555 (Manual) (metal doors).</td>
<td>626</td>
</tr>
<tr>
<td></td>
<td></td>
<td>557 (Manual) (wood doors).</td>
<td>626</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1845 @ HM 1945 @ WD.</td>
<td>626</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1842 (Automatic) (metal doors).</td>
<td>626</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1942 (Automatic) (wood doors).</td>
<td>626</td>
</tr>
<tr>
<td>Alternate:</td>
<td>Ives</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use coordinator where required by fire code.</td>
<td></td>
</tr>
</tbody>
</table>
Closing Device
Closer: LCN 4040XP – NO SUBSTITUTIONS
• Specify LCN 4040XP closers – NO SUBSTITUTIONS.
• Specify Top Jamb mount and Heavy Duty OH stop on all Main Entrances. Specify that all necessary support brackets and spacer blocks are included as required by opening.
• Specify Heavy Duty Rigid Parallel arms whenever possible.
• Do not specify stop arms of any type on closers - all interior doors shall swing 90°-100° or 180° degrees into an adjacent wall.
• Closers are to be thru bolted to the doors.

Automatic Operators
Electro-Mechanical
Automatic Operator: Stanley D-4990 Low Energy 689
• Provided where NOTED on drawings needed.
Alternate: Push Plate
Radio Frequency: CL4485 Receiver
CL4490 Transmitter

Stops & Holders
Door Stop:
- Rockwood 409 (Wall Stop Interior) 630
- 440 (Low Interior Floor) 626
- 442 (High Interior Floor) 626
• Allow for maximum swing of doors.
• Backing required at wall stops.

Alternate: Ives

Accessories:
Offset Pull:
- Rockwood BF157 630
Alternate: Ives

Pull:
- Rockwood 111 630
Alternate: Ives

Push Plate:
- Rockwood 70C 630
Alternate: Ives

Kick Plate:
- Rockwood K1050 10" x 2" LDW x B3E x CSK (Single doors). 630
- K1050 10" x 1" LDW x B3E x CSK (Pair doors). 630
• CSK= COUNTER SUNK SCREWS.
<table>
<thead>
<tr>
<th>Item</th>
<th>Manufacturer</th>
<th>Size/Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Guards Plate</td>
<td>Rockwood</td>
<td>305 x 42”</td>
<td></td>
</tr>
<tr>
<td>Threshold</td>
<td>Pemko</td>
<td>171A (1/2” x 5” Saddle threshold)</td>
<td>Architect to coordinate with project conditions or furnished as detailed on drawings if shown.</td>
</tr>
<tr>
<td>Door Sweep</td>
<td>Pemko</td>
<td>345 ANC</td>
<td></td>
</tr>
<tr>
<td>Smoke Seal</td>
<td>Pemko</td>
<td>S88 (verify color)</td>
<td></td>
</tr>
<tr>
<td>Weather Seal</td>
<td>Pemko</td>
<td>303AS (at head and jambs)</td>
<td></td>
</tr>
<tr>
<td>Door Silencer</td>
<td>Rockwood</td>
<td>608 (Metal Frames), 609 (WD Doors)</td>
<td>Gray</td>
</tr>
</tbody>
</table>
VII. DIVISION 09 – FINISHES

1. Listed manufacturers are to be the Basis of Design and final finish selections are to be reviewed with University Project Manager, Staff and Faculty for approval.

2. All substitutions are to be presented to the University Project Manager for approval

3. Contractor is to provide 10% attic stock per type of finish element as part of the project.

09 51 00 Acoustical Ceilings

1. University standard for general acoustical ceiling tile is:
 a) Manufacturer: USG.
 b) Style: Radar-ClimaPlus.
 c) Color: White.
 d) Size: 24-inch x 24-inch or 24-inch x 48-inch. Square edge.
 e) Grid: DX/DXL 15/16-inch.

09 62 00 Specialty Flooring

1. University standard for vinyl composition tile (VCT) is:
 a) Manufacturer: Armstrong.
 b) Style: Imperial texture.
 c) Color: To Be Determined (TBD) by project.
 d) Size: 12-inch x 12-inch.
 e) Installation: Straight line pattern. Do not quarter turn.

2. University standard for vinyl wall base is:
 a) Manufacturer: Johnsonite.
 b) Style: Cove base.
 c) Color: TBD by project.
 d) Size: 4-inch high.

3. University standard for Classroom sheet flooring is:
 a) Manufacturer: Mannington Commercial.
 b) Style: Relay.
 c) Color: Refer to Classroom Design Standard.
 d) Size: 6-inch wide roll goods with chemical seam sealer.

09 68 13 Carpet Tile

1. University standard for carpet tile is:
 a) Manufacturer: Interface.
 b) Style: TBD by project.
 c) Color: TBD by project.
Note: A/E is to coordinate with University Project Manager for carpet tile in classrooms. University has a separate Classroom Design Standard.

2. Tac-tile installation method is preferred by the University. A/E to evaluate substrate and application in schematic design phase to determine if tac-tile installation method is appropriate.

09 91 00 Painting

1. University standard for all paint is Sherwin Williams (no substitutions).

2. When existing walls are to be repainted or patched and repainted the contractor shall match the color as close as possible using the preferred University standard.

3. Painting of any wiring is prohibited. Contractor shall take provisions to cover wires to maintain wire warranty. Especially critical for all data wiring!

4. Walls are as follows:
 a) Common Areas, Offices, Conference Rooms: TBD by project.
 b) Classrooms and Laboratories: SW6385 Dover White.
 c) Finish:
 (1) Flat: All wall and ceiling types not mentioned under semi-gloss.
 (2) Semi-gloss: Block walls and areas where GWB is to be wiped down.
 (3) Block walls are to be painted with a filler material to fill in the pores and create a smooth finish.

5. Door frames are as follows:
 a) Color: TBD by project.
 b) Finish: Semi-gloss.
VIII. DIVISION 10 – SPECIALTIES

10 28 00 Toilet, Bath and Laundry Accessories

1. The following accessories are provided by University Facilities for Contractor to install. A/E is to use the accessories for restroom planning and layout. All accessories are to be coordinated with ADA height requirements.

2. Hand Towel Dispenser: Kimberly-Clark, D2 Hard Roll Towel Dispenser model 09073.

5. Hand Soap Dispenser: GOJO with custom Drexel University logo, 1.25L, grey, model 5150-06-B8WO3TN. Dispenser shall not be mounted to the mirror when multiple sinks are required.

6. ADA grab bars are to be stainless steel.

7. Toilet partition systems are to be phenolic floor mounted, basis of design to be Santana.

10 44 16 Fire Extinguishers

1. A/E and Contractor are to follow NFPA 10 requirements for portable extinguishers.

2. Contractor is to include location(s) of extinguisher(s) as part of submittal package.

3. Approved manufacturers are Kidde, Badger, and JL industries.
IX. DIVISION 11 – EQUIPMENT

11 53 00 Laboratory Equipment

1. Oxygen (O$_2$) detection equipment is to be installed in gas cylinder storage rooms or other specified areas. The LED readout on the O$_2$ detection equipment is to be mounted on the wall, 60-65 inches above finish floor, in the space. The O$_2$ equipment shall be located in the space requiring the testing. A horn and strobe must be installed above the door outside of the space where the O$_2$ equipment is installed. O$_2$ equipment is to be on emergency power and a direct connection; plug in style connection is prohibited.

11 53 13 Laboratory Fume Hoods

1. The design and installation of Laboratory Fume Hoods and associated systems shall comply with the Laboratory Design Standard 2013, refer to Appendix A.

2. Fume hoods shall be provided with an LED airflow indicator. Indicator shall be located so that it is visible from the front of the fume hood and local exhaust unit. Indicator to be a Phoenix Controls X30 (no substitutions).

3. Proper operation of chemical fume hoods must be demonstrated by the installing Contractor prior to project closeout. The required test is the ASHRAE 110 Test. The University requires the Contractor to subcontract the testing to ENV Services (no substitutions). The corporate office phone number is 1-800-883-3681.
X. DIVISION 14 – CONVEYING EQUIPMENT

14 08 20 Commissioning of Elevators

1. The purpose of the commissioning process is to provide the Owner with a high level of assurance that the elevator systems have been installed in the prescribed manner, and operate within the required performance guidelines. This process is not intended to take away or reduce the responsibility of the design team or installing contractors to provide a finished product. Commissioning is intended to enhance the quality of system start-up and aid in the orderly transfer of systems for beneficial use by the Owner.

2. The elevator components that shall be included in the commissioning process include:
 a) Hoist Motors.
 b) Hydraulic Machines.
 c) Elevator Pit.
 d) Elevator Hoistway.
 e) Controllers.
 f) Signaling Devices.
 g) Door Safety Devices.
 h) Cab Interiors.

3. The commissioning responsibilities of the Installing Contractor shall include the following:
 a) Review design for provision of power and fire alarm connections to the elevator system equipment.
 b) Prior to completion of installation, submit “System Verification Checklists” to Engineer of Record and Owner for review.
 c) Verify proper installation and performance of all elevator system services provided.
 d) Complete System Verification Checklists and manufacturer’s pre-start checklists prior to scheduling acceptance and operating tests.
 e) Provide an elevator system technician to assist during functional performance testing.
 f) Participate in the functional performance tests as required to achieve design intent.
 g) Provide dates when governing authorities testing will be conducted.
 h) Participate in O&M Training as required by project specifications.
 i) Obtain O&M data on all equipment and assemble in binders as required by the project specifications.
 j) Conduct a maintenance demonstration with hands-on training. Submit record drawings as required by the project specifications prior to the training. Demonstrate proper use, operations and routine maintenance of the elevators and components.
 k) Submit completed System Verification Checklists documenting that the work has been completed in accordance with the plans and specifications and that they are functioning as designed.

4. Acceptance and Operating Tests
 a) The Owner shall witness acceptance and operating tests on the elevators. The appropriate Contractor’s and/or manufacturer’s representatives shall be on-site to perform the testing. Acceptance and operating tests shall be performed in accordance
with manufacturer’s recommended procedures.

b) Contractors involved in the installation, fabrication, manufacturer, control, or designs of equipment shall be present at the acceptance and operating tests. A factory-authorized technician shall be on-site to conduct the testing.

5. Functional Performance Tests

a) Each elevator shall be tested in the presence of the Commissioning Agent (if applicable) and/or the Owner.

b) The Functional Performance Tests do not take the place of the tests performed by the authority having jurisdiction.

c) The Functional Performance Tests shall include the following, with the Commissioning Agent (if applicable), Owner, and authority having jurisdiction present:

 1) Elevator Hoist Motor: The elevator trade representative will demonstrate operational conformance to the project contract documents and prevailing code requirements. The operating testing includes loading the elevator to its rated capacity and operating the elevator continuous for thirty (30) minutes. The elevator will travel the full distance stopping at each level and proceeding immediately to the next level. During this test the temperature rise of the motor is recorded.

 2) Hydraulic Machine: The elevator trade representative will demonstrate operational conformance to the project contract documents and prevailing code requirements. The elevator trade representative will field test and verify components connected to the elevator system, documenting the date, type of device, device location, response time, and sensitivity.

 3) Controllers: The elevator trade representative will field test and verify operation of the controller to demonstrate conformance to the project contract documents and prevailing code requirements. The elevator trade representative will field test and verify the controller is receiving and displaying distance and velocity feedback from each elevator.

 4) Signaling Devices: The elevator trade representative will demonstrate operational conformance to the project contract documents and prevailing code requirements. The elevator trade representative will field test and verify operation of each signaling device on all floors for each elevator.

 5) Door Safety Devices: The elevator trade representative will demonstrate operational conformance to the project contract documents and prevailing code requirements. The elevator trade representative will field test and verify operation of each door safety device on all floors for each elevator.

6. Owner Orientation and Training

a) The installing contractor or manufacturer’s representative will provide the training. This training should include hands-on operational training. The Owner may choose to videotape this training for future use.

b) The installing contractor shall provide the Owner with copies of all inspections and acceptance.
7. Warranty Review
 a) The installing contractor shall provide an 11th month walk-through to observe the operation of the elevators. This will include a review meeting with the Owner’s personnel to review the continuing maintenance service agreement, a discussion of warranty issues, maintenance practices, usage changes, and chronic problems, as well as other issues affecting the owner and the operation of the elevators.

14 20 00 Elevators

1. Elevators installed throughout campus shall comply with the following Codes:
 c) The Americans with Disabilities Act guidelines and regulations, ICC A117.1-2009, as approved by the Commonwealth of Pennsylvania Department of Labor and Industry.

2. Limited Use and Limited Access (LU/LA) type elevators are prohibited. If the Architect and/or Contractor determine that a LU/LA type elevator is required due to existing conditions, they are to review with the University Project Manager and Facilities Department for approval.

3. The University mandates the use of non-proprietary equipment, particularly for the controllers. It is understood that non-proprietary companies have a hard time competing with the larger companies that typically provide proprietary systems.

4. Acceptable elevator companies that can be considered for new elevator installation include:
 a) Non-Proprietary:
 (2) Elite Elevator Services, LLC, Michael Somers, 1-888-498-6180.
 b) Proprietary companies need to be reviewed with Drexel Facilities Management for approval.

5. The University prefers non-proprietary controllers only. Acceptable manufacturers of non-proprietary controllers include the following or University approved equal:
 a) GAL Manufacturing Corporation – GALaxy Elevator Controls.
 b) ECI Elevator Control Inc.
 c) Motion Control Engineering.

6. Lighting:
 a) The elevator car lighting shall be connected to a normal and an emergency circuit.
 b) Elevator pits shall contain a vapor-proof fluorescent PL light.
7. Elevator Machine Room:
 a) Appropriate ventilation shall be provided in the elevator machine room.
 b) No water pipes shall be permitted to pass through the elevator machine room.
 c) One ground fault circuit interrupt (GFCI) receptacle and one floor drain or sump pump shall be installed in the elevator pit.

8. Provide elevator wall protection (blankets) for all new and refurbished elevator cabs.

9. Any and all diagnostic tools are to be provided by the elevator manufacturer.

10. **Machine room-less elevators are prohibited.**
XI. DIVISION 21 – FIRE SUPPRESSION

21 00 00 Fire Suppression

1. All new buildings and renovations to existing buildings shall be fully sprinkled. The design and installation of these systems must be in accordance with current City of Philadelphia, Commonwealth of Pennsylvania, and International Fire Codes, as well as any additional requirements provided by the University’s Insurance Underwriter.

2. Each system shall be designed and installed in accordance with the latest edition of the applicable NFPA Standard, including, but not limited to:
 a) NFPA 10 – Standard for Portable Fire Extinguishing.
 b) NFPA 12 – Standard on Carbon Dioxide Extinguishing Systems.
 c) NFPA 12A – Standard on Halon 1301 Fire Extinguishing Systems.
 d) NFPA 13 – Standard for the Installation of Sprinkler Systems (for all sprinkler systems, including residential living facilities).
 e) NFPA 14 – Standard for the Installation of Standpipes and Hose Systems.
 f) NFPA 17 – Standard for Dry Chemical Extinguishing Systems.
 g) NFPA 17A – Standard for Wet Chemical Extinguishing Systems.
 h) NFPA 20 – Standard for the Installation of Stationary Pumps for Fire Protection.
 i) NFPA 70 – National Electrical Code.

3. Documents submitted for Authority approval and permit applications shall be completed by a NICET Level III or Level IV certified designer in water-based extinguishing system layout or a licensed Fire Protection Engineer.

4. Fire pumps, risers, floor connections and associated alarms have been provided for most existing buildings and all floors.

5. All devices and equipment installed in the fire suppression systems shall be approved and listed by Underwriters Laboratories and/or Factory Mutual.

6. The A/E should make early contact with the University’s Fire Safety Specialist to ascertain any building-specific requirements.

7. Prior to final approvals by the University, the A/E shall submit plans and specifications to the FM Global for approval. These approvals shall then be submitted to the University.

8. All projects involving street-pressure sprinkler systems, street-pressure fire standpipe systems, or fire pumps require hydrant tests on the mains in all streets that can be used to feed the building. Historical data may or may not be available from the University or the Philadelphia Water Department.
9. All sprinkler lines shall be equipped with an inspector’s test connection piped directly into a drain capable of handling discharge from a fully-opened test valve.

10. The Contractor’s final shop drawings and specifications shall be submitted to FM Global for approval prior to submittal to the University for Approval.

11. Final acceptance tests of the sprinkler and standpipe system in accordance with and as required by NFPA Standards must be conducted by a Contractor licensed and certified by the City of Philadelphia, Department of Licenses and Inspection. The University’s Insurance Underwriter shall be notified at least three (3) working days prior to the test to schedule their attendance at the acceptance testing. A copy of the Certificate of Compliance shall be submitted to the University Project Manager prior to Project Close-Out.

12. Contractor shall refer to Section III of the City of Philadelphia Department of Public Health Air Pollution Control Board – Air Management Regulation XV, Control of Emissions form Emergency Generators and Fire Pumps, in regards to fire pump operation to determine if operation is during ozone season.

13. All equipment is to be individually scheduled.

14. Project Close-out Documents for the Fire Suppression systems include:
 a) As-built drawings detailing all installed systems and indicating the location of all control valves.
 b) Certification of Acceptance Tests.
 c) Copies of any approvals obtained from the City of Philadelphia or FM Global.
 d) Operation and Maintenance Manuals for any equipment installed.
 e) Execution of training for University personnel on the operation of any new fire suppression equipment (e.g. pumps, compressors, etc.).

15. All new equipment is to be provided with software and hardware necessary for University Facilities to have the ability to troubleshoot and/or configure any field equipment. Equipment manufacturer is to provide software and hardware as part of closeout package.

16. The following is a list of prohibited installations and require University approval for their installation:
 a) Wet fire sprinkler systems in which any component may be exposed to outdoor conditions.
 b) Diesel-engine driven fire pumps (use electric pumps only).
 c) Welded sprinkler piping.

17. A/E to coordinate that all materials used in this sprinkler installation should be FM Approved, if not A/E is to notify University Project Manager. FM Approved products are all marked with the "FM Diamond." This includes, but is not limited to, sprinklers, sprinkler piping/fittings, pumps, pump controllers, fire alarm systems and smoke detectors. The Approval Guide, a publication of FM Approvals, may be referenced at www.approvalguide.com. Sprinklers are to be FM Approved.
18. FM Global recommends all hydraulic calculations to be based on a water test completed within one calendar year of when project is to begin construction.

19. Sprinkler design densities are to be:
 a) Light Hazard – 0.10 gpm/sq.ft. over the most remote 1500 sq.ft., including 250 gpm hose allowance.
 b) Ordinary Hazard – 0.15 gpm/sq.ft. over the most remote 2500 sq.ft., including 250 gpm hose allowance.
 c) Equipment Type/ Mechanical Rooms – 0.20 gpm/sq.ft. over the most remote 2500 sq.ft., including 250 gpm hose allowance.

20. All hydraulic calculations are to be provided with a safety factor of 10 psi.

21 05 53 Identification for Fire Suppression Piping and Equipment

1. All fire suppression piping and equipment shall be required to be labeled to comply with OSHA and ANSI/ASME A13.1-2007 standards for the identification of systems.

2. The marking system shall identify the contents, size, direction of flow, and operating characteristics (i.e. pressure and/or temperature).

3. All valves, drains, and controls shall be labeled using plastic I.D. tags securely connected to the specific item using brass chain or "S" hooks. The contractor shall provide a list of each tagged item and its function and a valve chart in the main Sprinkler or Mechanical Room.

4. All equipment must be identified using phenolic nameplates and labeled in accordance with the nomenclature used on the drawings and compatible with the MIMS System.

21 08 00 Commissioning of Fire Suppression

1. The purpose of the commissioning process is to provide the Owner with a high level of assurance that the fire suppression systems have been installed in the prescribed manner, and operate within the required performance guidelines. This process is not intended to take away or reduce the responsibility of the design team or installing contractors to provide a finished product. Commissioning is intended to enhance the quality of system start-up and aid in the orderly transfer of systems for beneficial use by the Owner.

2. The fire suppression components that shall be included in the commissioning process include:
 a) Sprinkler Systems.
 b) Standpipe Systems.
 c) Fire Pump.
 d) Jockey Pump.
 e) Fire Protection Vault.
3. The commissioning responsibilities of the Installing Contractor shall include the following:
 a) Review design for provision of power and fire alarm connections to the fire suppression equipment.
 b) Prior to completion of installation, submit “System Verification Checklists” to Engineer of Record and Owner for review.
 c) Verify proper installation and performance of all fire suppression system services provided.
 d) Complete System Verification Checklists and manufacturer’s pre-start checklists prior to scheduling acceptance and operating tests.
 e) Provide a fire suppression system technician to assist during functional performance testing.
 f) Participate in the functional performance tests as required to achieve design intent.
 g) Provide dates when governing authorities testing will be conducted.
 h) Participate in O&M Training as required by project specifications.
 i) Obtain O&M data on all equipment and assemble in binders as required by the project specifications.
 j) Conduct a maintenance demonstration with hands-on training. Submit record drawings as required by the project specifications prior to the training. Demonstrate proper use, operations and routine maintenance of the elevators and components.
 k) Submit completed System Verification Checklists documenting that the work has been completed in accordance with the plans and specifications and that they are functioning as designed.
 l) Provide written certification documenting that the following work has been completed in accordance with the plans and specifications and that they are functioning as designed. Where the work has been sub-contracted, the sub-Trade Representative shall be responsible for the initial certification with the Fire Protection Trade Representative re-certifying that he has inspected the work and that it has been completed and functioning as designed. This certification must be submitted prior to the final verification.
 (1) Correct labeling equipment, valves, drains and test locations.
 (2) Prevailing code compliance certified performance of fire protection system.
 (3) Reporting characteristics and installation of fire protection system complete and fully functional per contract documents.
 (4) Fire protection contractor’s material and test certificate for aboveground and below ground piping.
 m) Provide set of record as-built drawings to the Engineer of Record for inclusion into record documents.

4. Start-Up:
 a) The installing contractor shall perform start-up of the fire pump and jockey pump. The appropriate contractors and/or manufacturer’s representative shall be on-site to perform start-up. No system will be started until the manufacturer’s checklists have been completed. Start-up will be performed according to the manufacturer’s recommended procedures. The Owner will visit the site to review completeness of installation in conjunction with progress meetings prior to starting equipment.
b) Contractors involved in installation, fabrication, manufacturer, control, or designs of equipment shall be present at the time of start-up. A factory-authorized technician shall be on site to start equipment when required by the specifications. This will minimize delays in bringing equipment on line and expedite acceptable functional performance.

5. Functional Performance Tests:
 a) Each major system will be tested. This will be coordinated and witnessed by the Owner. Witnessing the functional performance tests will serve as a compliment to the O&M Training. No tests will be performed until the system and related subsystems have been started and documented through point-to-point checklists and other documentation.
 b) The Functional Performance Tests shall include the following, with the Commissioning Agent (if applicable), Owner, and authority having jurisdiction present:
 1) Sprinkler System: The fire protection trade representative shall demonstrate hydrostatic, operational and main drain testing of the system. These tests shall meet the requirements of NFPA 13 and the AHJ. The fire protection trade representative shall hydrostatically test the system, placing the system under a working water pressure of 200 psi for a period of 2 hours or by an approved method from the AHJ. A visual loss in gauge pressure or visual leakage shall be considered a failure in testing. The leak in the system shall be repaired and the system will require testing again in the same manner. The fire protection trade representative shall coordinate the operational testing with the fire alarm contractor. The fire protection trade representative shall open the inspector’s test connection, the water gong shall sound within 5 minutes and the fire alarm shall be initiated within 90 seconds. The fire alarm trade representative shall conduct a main drain test. The fire protection trade representative shall open the main drain and it shall remain open until the system stabilizes. The static and residual pressures shall be recorded.
 2) Standpipe System: The fire protection trade representative shall demonstrate hydrostatic and flow testing of the system. These tests shall meet the requirements of NFPA 13, 14 and the AHJ. To hydrostatically test the system the fire protection trade representative shall place the system under a working water pressure of 200 psi for a period of 2 hours or by an approved method from the AHJ. The pressure shall be monitored using a pressure gauge installed at the top of each standpipe. A visual loss in gauge pressure or visual leakage shall be considered a failure in testing. The leak in the system shall be repaired and the system will require testing again in the same manner. The fire alarm trade representative shall coordinate the flow test with the local fire department. The flow test shall meet the requirements of NFPA 14 and the AHJ.
 3) Fire Pump: The fire protection trade representative shall demonstrate acceptance testing of the fire pump system. The fire protection trade representative shall conduct the field acceptance test with the manufacturer’s representative according to NFPA 20. The fire protection trade representative shall provide all testing equipment. The fire protection trade representative will demonstrate fire pump controller acceptance testing.
(4) Jockey Pump: The fire protection trade representative shall demonstrate acceptance testing of the jockey pump. The fire protection trade representative shall conduct the field acceptance test with the manufacturer’s representative according to NFPA 20. The fire protection trade representative shall provide all testing equipment. The fire protection trade representative shall demonstrate jockey pump controller acceptance testing.

(5) Fire Protection Vault: The fire protection trade representative shall demonstrate a hydrostatic and flow test of the system. These tests shall meet the requirements of NFPA 13, 14 and the AHJ.

6. Owner Orientation and Training
 a) The installing contractor shall provide the Owner comprehensive training in the understanding of the systems and operation and maintenance of each major piece of equipment.
 b) The installing contractor or manufacturer’s representative will provide the training. This training should include hands-on operational training. The Owner may choose to videotape this training for future use.
 c) The training shall include start-up, operation in all modes possible, shut-down and any emergency procedures.
 d) The training shall include a review of all systems using simplified system schematics including riser diagrams, valve locations, and equipment locations.
 e) The installing contractor shall provide the Owner with copies of all inspections and acceptance.
 f) The manufacturer's representative shall provide the instructions on each major piece of equipment. These sessions shall use the printed installation, operation and maintenance instruction material included in the O&M manuals and shall include a review of the written O&M installations emphasize safe and proper operating requirements and preventative maintenance. Qualified service engineers employed by the manufacturers or their qualified sales representatives shall do equipment training. The operation and function of the equipment in the system shall be discussed. The start-up and shut-down modes of operation shall be demonstrated. Emergency operations shall be demonstrated.
 g) The Contractor shall attend all sessions and shall add to each session any special information relating to the details of installation of the equipment as it might impact the operation and maintenance.
 h) The installing contractor shall assist in the coordination of yearly testing, calibrating, and servicing as specified in the contract documents.

21 10 00 Water-Based Fire-Suppression Systems

1. Aboveground Piping:
 a) Up to and including 2-inch: Schedule 40; Type E, Grade B or Type S, Grade B.
 b) 2-1/2-inch and larger: Schedule 40; Type E, Grade B or Type S, Grade B.
 (1) Note – 2-1/2-inch and larger: Schedule 10; Type E, Grade B or Type S, Grade B may be used for risers only. Prior to design or use the A/E and/or Contractor is to obtain approval from University Facilities and provide documentation cost savings.
2. Aboveground Pipe Fittings:
 a) Up to and including 2-inch: Threaded.
 b) 2-1/2-inch and larger: Grooved.
 c) Branch connections:
 (1) Weldolet and sockolet fittings are allowed on schedule 40 pipe.
 (2) Merchant couplings and non-reinforced type fittings are **prohibited**.

3. Aboveground Pipe Welding:
 a) Welding of Schedule 10 pipe is **prohibited**.
 b) Welding of Schedule 40 pipe 2-inch and smaller is **prohibited**.
 c) Schedule 40 pipe 2-1/2-inch and larger is to be socket or butt welded.

4. Sprinklers:
 a) Approved manufacturers are Tyco Fire & Building Products, Viking Corporation, and Reliable Automatic Sprinkler Company.
 b) Sprinkler Escutcheons and Guards: Type suitable for sprinkler head used and manufactured by sprinkler manufacturer.
 c) Provide spare sprinklers for each type used in accordance with NFPA 13.
 d) Provide one (1) special wrench for each type of sprinkler in each sprinkler cabinet for installation and replacement of sprinklers.
 e) Sprinklers located in Tele/Data Closets are to be as high as possible and contain a safety cage.
 f) Sprinklers located in Equipment Type/Mechanical Rooms are to have an orifice size of K-8.0.

5. All fire water services must be provided with a backflow prevention device of a type and in a location in accordance with the Philadelphia Water Department Cross Connection Control Program.
 a) The basis of design shall be Ames Fire & Waterworks, Series 2000SS double check valve assembly principle backflow preventer (no substitutions).
 b) The basis of design configuration shall include two full-size backflow preventers installed in parallel to permit continuous, uninterrupted water service during testing and maintenance.
 c) Each assembly shall be provided with FM-approved epoxy-coated flanged OS&Y gate valves.
 d) A sanitary drain shall be provided directly below the assemblies for relief valve discharge.

21.31.13 Electric Driven, Centrifugal Fire Pumps

1. Fire pumps, controllers, and automatic transfer switches are to be UL listed and Factory Mutual Approved.
2. Electric Fire Pump:
 a) Approved manufacturers are A-C Fire Pump, Armstrong Pumps, Aurora Pentair Water, Patterson Pump Co., and Peerless Pumps.
b) Factory packaged unit, UL listed and FM approved, horizontal split case, centrifugal fire pump, including pump drive, controller and accessories, with performance requirements shown.

c) Base: Mount fire pump and pump drive on a common steel bent form or cast iron base plate. Align pump and motor before and after pump base has been installed and grouted in place.

d) Minimum Pump Capacity: 150 percent of rated capacity, at not less than 65 percent of rated total head pressure.

e) Maximum Shutoff Pressure: 120 percent of rated pressure.

f) Casing: Cast iron, 30,000 psi minimum tensile strength, bearing housing supports, and suction and discharge flanges integrally cast with lower half pump casing. Make upper half removable without disconnection of suction and discharge of casing flanges.

g) Impeller: Bronze, enclosed, keyed to shaft and held in place with threaded shaft sleeves, dynamically balanced at factory. Contractor to confirm stress cracks are not present in impeller.

h) Shaft: SAE 1045 steel with key locked and threaded bronze sleeves, designed to tighten upon rotation of shaft.

i) Gasket Seal: Between impeller hub and shaft sleeve.

j) Casings Rings: Renewable type, designed to seat against a shoulder in pump casing around full periphery of wearing ring. Lock wearing rings by dowelling to prevent rotation.

k) Bearings: For rotating parts, provide heavy duty grease-lubricated ball bearings with water slingers. Design bearing housing to flush lubricant through bearings.

l) Lantern Ring: Connected to pressure side of pump.

m) Stuffing Boxes: With stainless steel swing bolts, nuts and fasteners for packaging.

n) Driver: Vertical, open drip proof ball bearing, AC induction squirrel cage 'P' face motor, 460 Volts, 3 Phase, 60 Cycles, (solid state soft start, wye-delta, across the line, part winding, or primary resistance reduced voltage) start. Locked rotor current shall not exceed values specified in NFPA 20.

o) Provide flexible coupling and coupling guard.

p) Piping from the packing gland on each sleeve bearing to the drain be in sprinkler rated PVC.

3. Fire Pump Controller and Automatic Transfer Switch:

a) Approved manufacturers are Joslyn Clark Corp. and Metron Inc.

b) House fire pump controller and automatic transfer switch in a NEMA 3R enclosure in separate bariered compartments. Complete package shall be UL listed and FM approved for fire pump service. Provide enclosure with floor mounting feet.

c) Fire Pump Controller:

(1) UL listed, FM approved combined manual/automatic type suitable for (closed circuit, open circuit, transition wye-delta, or solid state soft) starting, meeting requirements of NFPA 20 and NFPA 70. House in a NEMA 2 (drip proof), 3R (rain tight), 4 (water tight) or 12 (dust tight)) enclosure. Factory assemble, wire and test. Mark "Fire Pump Controller".

(2) Isolating Switch and Circuit Breaker: Motor rated and capable of interrupting motor locked rotor current. Mechanically interlock isolating switch and circuit breaker assembly with a single externally operated handle. Mechanically interlock
operating assembly with enclosure door.

(2) OR (3)

(3) Circuit Breaker: Motor rated and capable of interrupting motor locked rotor current. Provide an externally operated handle. Mechanically interlock operating assembly with enclosure door.

(4) Circuit breaker shall accommodate a short circuit rating of not less than 100,000 amperes RMS at 480 volts. Trip functions shall be self-contained within circuit breaker case and not require additional current transformers or voltage sources to accomplish trip function. Breaker trip curve adjustments shall be capable of being field tested to verify actual pick-up, locked rotor, and instantaneous trip points after field installation, without disturbing line or load wiring.

(6) for fire alarm panel in constantly attended location OR (7) when other remote annunciation is required

(7) Provide front mounted "Power On" pilot light, "Start" and "Stop" pushbuttons, and "Emergency Run" mechanism. "Power On" pilot light shall indicate loss of control transformer power as well as line power. Provide and wire power failure, pump running, phase reversal and phase failure alarm contacts to terminals rated 0.25 amps at 24 Vdc for remote alarm. Remote alarm panel where shown.

(8) Combination Pressure Indicator/Pressure Switch: Mount on front of controller enclosure. Unit shall be adjustable for combined pressure settings, with a minimum differential of 6 psi (41.4 kPa).

(9) Fit controller with a minimum run timer and timer pilot light.

(10) Provide separate voltage surge protective devices connected between cabinet grounding lug and ground, and between each line terminal of isolating switches and ground. These devices shall be rated to suppress voltage surges above rated line voltage.

(11) Provide equipment status and general alarm contacts for remote monitoring by Building Management System.

(12) Cable and conduit shall enter panel from side or bottom.

d) Automatic Transfer Switch:

(1) Provide built-in emergency power transfer switch equipment, factory assembled, wired and tested unit, furnished with main fire pump controller, meeting requirements of NFPA 20 2007 edition, Section 10-8 and NFPA 70. Mark unit, "Automatic Transfer Switch".

(2) Include a motor rated disconnect/isolating switch capable of interrupting motor locked rotor current.

(3) Transfer switch sensing circuitry shall be capable of sensing both normal source and emergency source. Set normal source pick-up at 95 percent and drop out at 85
percent of nominal voltage. Set emergency source to pick-up at 90 percent of
nominal voltage and 95 percent of nominal frequency. Transfer signal shall be
delayed for one second to override momentary normal power outages, delaying
transfer and motor start signals.

(4) Manufacture switch for fire pump controllers to accommodate a short circuit
current of 100,000 amperes RMS minimum.

(5) Provide both normally open and normally closed auxiliary contacts for remote
annunciation of transfer switch position. Switch shall be electrically
operated/mechanically held, and capable of being operated by a manual transfer at
switch under load.

(6) Cable and conduit shall enter panel from side or bottom.

4. Jockey Pump:
 a) UL listed and FM approved horizontal centrifugal jockey pump with electric pump drive,
 controller and pressure switch with performance requirements shown.
 b) Construction: Bronze fitted; with mechanical seal and relief valve; close coupled; driven
 by a 460 volt, 3 phase, 60 cycle, open drip proof motor.
 c) Control Panel: Wall mounted NEMA (2 (drip proof), 3R (rain tight), 4 (water tight) or 12
 (dust tight)) enclosure, containing a fused disconnect switch, magnetic A-T-L starter, H-
 O-A selector switch, overload relays and circuitry to provide automatic start and stop
 from panel mounted pressure switch. Provide dual element time-delay fuses sized for
 motor requirements.
 d) Cable and conduit shall enter panel from side or bottom.

5. Accessories:
 a) Automatic Air Release Valve: Comply with NFPA 20 for installation in fire pump
casing.
 b) Circulation Relief Valve: Comply with UL 1478, brass construction, spring loaded; for
 installation in pump discharge piping.
 c) Suction and discharge pressure gauges, 3 1/2 inch dials reading in psi with range equal to
twice rated discharge pressure of pump.
 d) Eccentric tapered reducer at suction inlet of pump.
 e) Concentric tapered increaser on discharge outlet of pump.
 f) Flow Measuring Device: UL-listed or FM-Approved, fire-pump flowmeter system with
capability to indicate flow to not less than 175 percent of fire-pump rated capacity.
 Pressure rated to (175 or 250) psig.
 g) Hose valve manifold with hose valves, caps and chains.
 h) Ball drip.
 i) Pressure Relief Valve and Closed Type Discharge Cone: Comply with UL 1478, bronze
or cast iron construction, spring loaded; for installation in fire suppression piping. Use
only when sum of the pump shut-off head and static pressure of water supply exceeds
design pressure rating of piping system.
XII. DIVISION 22 – PLUMBING

22 05 00 Common Work Results for Plumbing

1. The entire plumbing and drainage system must comply with the City of Philadelphia Plumbing Code, latest edition, and this Guide.

2. Each system shall be designed and installed in accordance with the latest edition of the applicable Standards, including, but not limited to:
 a) NFPA Standards;
 b) Americans with Disabilities Act Accessibility Guidelines (ADAAG).
 c) Underwriters Laboratory, Inc. (UL).
 d) Factory Mutual System (FM).
 e) American National Standards Institute (ANSI).
 g) American Welding Society (AWS).
 h) American Water Works Association (AWWA).
 i) Manufacturers Standardization Society of Valve and Fitting Industry (MSS).
 j) American Society of Mechanical Engineers (ASME).

3. All equipment is to be individually scheduled.

4. All new equipment is to be provided with software and hardware necessary for University Facilities to have the ability to troubleshoot and/or configure any field equipment. Equipment manufacturer is to provide software and hardware as part of closeout package.

5. All central domestic hot water systems which serve fixture(s) located more than 50 feet from the hot water source shall be provided with a properly sized and valved hot water return system. Temperatures should be maintained at 110ºF at the faucet.

6. All hot water heating sources shall generate a minimum of 130ºF supply water.

7. A temperature controlled mixing valve shall be installed in hot water systems requiring supply water temperature below 160ºF.

8. All domestic water systems must be cleaned and disinfected in accordance with AWWA Standards per City of Philadelphia approval. Bacteriological test shall be performed by a state-certified laboratory and certified analysis and delivered to owner.

9. Heating sources for domestic hot water heaters will depend on location and application but, generally, gas-fired devices are preferred.

10. All piping and drain lines are to be installed to avoid tripping hazards in public or work areas.
11. New toilet rooms shall be provided with one 4-inch floor drain approximately centered in the room to facilitate cleaning. Trap primers shall be installed in accordance with Section P-1204.3 of the City of Philadelphia Plumbing Code. Non-electronic trap primers are preferred. Approved manufacturers are Jay R. Smith and Precision Plumbing Product Company.

12. Each restroom is to have isolation valves located outside of room for piping mains.

22 05 13 Common Motor Requirements for Plumbing Equipment

1. All motors shall conform to the latest IEEE or NEMA standards relating to characteristics, dimensions, tolerances, temperature rise, insulation, and ratings for noise and vibration.

2. Use NEMA Class B insulation with motor frame amply sized to provide a 1.15 service factor and an ambient of 40ºC maximum.

3. To maintain the University’s Green Initiative, and to optimize motor system efficiency, reduce electrical power consumption and costs, and improve system reliability, NEMA Premium® labeled electric motors shall be specified for all motors. Each motor shall achieve the NEMA Premium™ efficiency levels contained in NEMA Standards Publication MG 1-2011 as follows:

<table>
<thead>
<tr>
<th>Nominal Efficiencies For "NEMA Premium™" Induction Motors Rated 600 Volts Or Less (Random Wound)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>7.5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>125</td>
</tr>
<tr>
<td>150</td>
</tr>
</tbody>
</table>
4. Provide shaft grounding kit for field installation:
 a) All motors controlled by Variable Frequency Drives shall be equipped with AEGIS Shaft Grounding Ring kit to be installed by motor or equipment manufacturer or installed in the field by contractor.

5. Motors: Wire shaft ground kit on motors for use with variable frequency drives:
 a) Ensure AEGIS Shaft Grounding Kit is installed on motor in accordance with manufacturer’s recommendation.
 b) AEGIS Shaft Grounding Ring (SGR) is bolted directly to the motor end bracket or installed with conductive epoxy to ensure ground connection from the AEGIS SGR to motor frame.

22 05 19 Meters and Gages for Plumbing Piping

1. All devices, piping, valving, relays, end switches, control components, power wiring, control wiring and interlock wiring shall be provided as required to accomplish the sequence of operation for the various pieces of equipment to provide a fully operational system.

2. Pressure and Temperature Ratings:
 a) Each meter and gauge shall be rated and suitable for the piping system that it is being installed in.
 b) Minimum upstream and downstream straight pipe diameters for meters shall be provided per manufacturer’s published recommendations.

3. Pressure Gauges – Provide and install all gauges in such a manner as to be easily read from normal observation positions. Gauges shall be as follows:
 a) Dial Size: 4-1/2 inch.
 b) Accuracy: 1/2% of Full Scale, Grade 2A, ASME B40.100.
 c) Case: Black Phenolic, Solid Front.
 d) Ring: Threaded Reinforced Black Polypropylene.
 e) Window: Glass.
 f) Pointer: Micrometer Adjustable.
 g) Movement: Rotary, 400 SS, Teflon-Coated Pinion Gear & Segment.
 h) Bourdon Tube & Socket: Type 316L Stainless Steel.
 i) Optional Features: PLUS! Performance.
 j) Manufacturer: Ashcroft.
 k) Model: 45-1279-SS-(Connection Size & Type)-XLL-(Pressure Range).
 l) *Alternate Manufacturer: Treice.
 n) *Each gauge must be supplied with a Treice Model 870-13 or 870-16 impulse dampener.

 NOTE: All pressure gauges utilized for steam service must be equipped with a coil syphon constructed of 316 stainless steel or seamless Schedule 80 carbon steel.
o) Select range in such a manner that the operating pressures is at the mid-point of the scale. Pressure ranges shall be as follows:

 (1) Fluids, Suction Side of Pump, Open Systems: 30” to 0 lbs. to 150 lbs.
 (2) Fluids, Suction and Discharge Side of Pump, Closed Systems: 0 lbs. to 100 lbs.

4. Thermometers – Provide and install all thermometers in such a manner as to be easily read from normal observation positions. Thermometer shall be as follows:

 a) Dial Size: 5 inch.
 b) Accuracy: 1% of Full Scale, Grade A, ASME B40.3.
 c) Stem & Case: 304 Stainless Steel Hermetically Sealed.
 d) Stem Diameter: 0.250 inch.
 e) Window: Polycarbonate.
 f) Connection: 1/2 inch NPT Union.
 g) Location: Everyangle®.
 h) Manufacturer: Ashcroft.
 j) Alternate Manufacturer: Treice.
 k) Alternate Model: B856-(Stem Length Code)-(Range Code)-SWV.

 NOTE: All thermometers installed in piping or pipelines shall be supplied with threaded, stepped shank, 316 stainless steel thermowells of suitable dimensions for the thermometer being supplied.

 l) Select range in such manner that the operating temperature is at the mid-point of the scale. Thermometer ranges shall be as follows:

 (1) Cold water: 40°F to 160°F.
 (2) Hot water: 50°F to 300°F.

22 05 29 Hangers and Supports for Plumbing Piping and Equipment

1. The following hanger types shall be specified for the support of piping with buildings:

 a) All pipe hangers shall be sized to fit over insulated piping. Provide the following insulation protection devices:

 (1) Up to and including 6" - Insulation shield equal to Anvil Fig. 167.
 (2) 6" and above - Pipe insulation protection saddle equal to Anvil Fig. 160.
 (3) Alternate: Insulated piping above 2" - Rigid hydrous calcium silicate insulation having a compressive strength of 200 PSI may be used at hanger locations on piping above 2". Insulation shields equal to Anvil Fig. 167 must be used in conjunction with the insulation.

 b) All hangers and supports directly in contact with the piping must be of compatible materials.

 c) Horizontal piping up to and including 6" nominal pipe diameter:

 (1) Ceiling Hung - Adjustable clevis hangers equal to Anvil Fig. 260.
 (2) Floor, wall or rack supported - offset pipe clamp equal to Anvil Fig. 103.
d) Horizontal piping 8" through 12":
 (1) Ceiling Hung - Adjustable steel yoke pipe roll equal to Anvil Fig. 181.
 (2) Floor or rack supported - Adjustable pipe roll stand with steel base plate equal to
 Anvil Fig. 274P.

e) Horizontal Piping above 12":
 (1) Ceiling Hung – Adjustable steel yoke pipe roll equal to Anvil Fig. 181.
 (2) Floor or rack supported - Adjustable pipe roll with base equal to Anvil Fig. 274P.

f) Spring hangers shall be used within mechanical rooms to support piping connected to
 rotating equipment as follows:
 (1) Up to and including 6" nominal pipe size: Ceiling mounted, pre-engineered spring
 pipe hanger equal to Anvil Fig. B-268 Type A.
 (2) Above 6" manual pipe size: Piping cushion for pipe rolls equal to Anvil Fig. 178.

2. Hanger Spacing: Piping shall be supported at distances not exceeding the spacing specified in
 Table 305.4 of the 2009 International Mechanical Code.

3. All hub or joint pipe shall be supported within the above recommendations for steel and at each
 joint.

4. Polyvinyl chloride pipe (PVC) shall be supported at intervals recommended by the manufacturer
 for a 120°F fluid temperature.

5. All piping which must pass to within six (6) feet, measured horizontally, from all switchboards,
 panels, metering assemblies, buss ducts, etc., shall be provided with watertight sheet-metal
 enclosures to completely protect such equipment in the event of leakage. Provide a drain
 tapping at the low point of the enclosure and pipe such to the nearest drain.

22 05 53 Identification for Plumbing Piping and Equipment

1. All domestic water piping and equipment shall be required to be labeled to comply with OSHA

2. The marking system shall identify the contents, size, direction of flow, and operating
 characteristics (i.e. pressure and/or temperature).

3. All valves and controls shall be labeled using plastic I.D. tags securely connected to the specific
 item using brass chain or "S" hooks. The contractor shall provide a list of each tagged item and
 its function and a valve chart in the main Mechanical Room.

4. All equipment must be identified using phenolic nameplates and labeled in accordance with the
 nomenclature used on the drawings and compatible with the MIMS System.

22 07 19 Plumbing Piping Insulation

1. All domestic cold and hot water and hot water return piping must be insulated with 1 lb. density
 fiberglass insulation having an outer jacket of Kraft paper bonded to aluminum foil reinforced
with fiberglass yarn. The longitudinal seams of the jacket shall overlap and be sealed using the factory applied pressure sensitive adhesive. Staples are prohibited. Insulation thickness shall not be less than those recommended in 2009 International Energy Conservation Code for the intended service or that required to present the formation of condensation or that required to assure a maximum surface temperature of 80°F, whichever is the most stringent. The insulation shall have a maximum thermal conductivity of 0.23 BTU-IN./HR.- FT.²-°F at a mean temperature of 75°F.

2. All domestic cold and hot water and hot water return pipe risers exposed to view in occupied spaces are to be insulated and have a PVC cover. The minimum thickness of the cover will be 30 mil.

3. All non-service/maintenance related fittings (i.e. elbows, tees, etc.) shall be insulated with pre-molded, light impact, UV resistant PVC covers. The minimum thickness of the cover will be 30 mil. Fiberglass insulation thickness shall be equal to the required thickness of the adjoining piping. Foam filled fittings and covers are prohibited.

4. Fittings requiring service/maintenance access (i.e. flanges, unions, shut-off valves, check valves, balancing valves, PRV's, etc.) shall be insulated with removable, reusable covers which use straps and buckles to secure the cover in place. The drawings shall detail the interface between the removable cover and the adjacent piping insulation to assure a tight interface which prevents heat loss and the formation of condensation. Covers shall consist of inner and outer walls of 304 SS 0.11" thick mesh, nylon coated 304SS 0.15" threaded seams, 304SS 1/8" thick x 1-1/2" buckles, PTFE/Teflon belting and 304SS I.D. tags.

5. All pre-fabricated underground piping systems shall be designed to meet the above insulation thickness requirements. All piping within manholes and removable covers for valves etc. shall meet the above insulation thickness requirements, and shall be considered an exterior application and therefore be covered with the aluminum jacket.

6. All insulation provided shall conform to all pertinent codes including ASTM E-84, UL 73 and NFPA 255, and shall not exceed a flame spread of 25, fuel contributed 50 and smoke developed 50.

7. Rigid hydrous calcium silicate insulation having a compressive strength of 200 PSI may be used at hanger locations on piping above 2". Insulation shields equal to Anvil Fig. 167 must be used in conjunction with the insulation.

8. Refer to Pipe Insulation Schedule below for minimum insulation size based on pipe size:
9. Piping System Types

<table>
<thead>
<tr>
<th>Piping System Types</th>
<th>Fluid Temp. Range (deg. F)</th>
<th>Insulation Thickness (Inches) for Pipe Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Less than 1</td>
</tr>
<tr>
<td>PLUMBING SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic, Softened, Lab & Lab Special Cold Water:</td>
<td>Any</td>
<td>1.0</td>
</tr>
<tr>
<td>Domestic, Softened, Lab & Lab Special Hot Water and Recirculating:</td>
<td>130 & below</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>131-160</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>above 160</td>
<td>1.0</td>
</tr>
<tr>
<td>Horizontal Rain Water Conductors</td>
<td>Any</td>
<td>1.0</td>
</tr>
<tr>
<td>Above Grade Horizontal Sanitary Piping from Mech. Equipment Area Floor Drains</td>
<td>Any</td>
<td>1.0</td>
</tr>
</tbody>
</table>
22 08 00 Commissioning of Plumbing

1. The purpose of the commissioning process is to provide the Owner with a high level of assurance that the plumbing systems have been installed in the prescribed manner, and operate within the required performance guidelines. This process is not intended to take away or reduce the responsibility of the design team or installing contractors to provide a finished product. Commissioning is intended to enhance the quality of system start-up and aid in the orderly transfer of systems for beneficial use by the Owner.

2. The commissioning responsibilities of the Installing Contractor shall include the following:
 a) Review design for provision of power to appropriate plumbing equipment.
 b) Prior to completion of installation, submit “System Verification Checklists” to Engineer of Record and Owner for review.
 c) Certify that plumbing systems, subsystems, and equipment have been installed, calibrated, and started and are operating in accordance with the Contract Documents.
 d) Certify that plumbing instrumentation and control systems have been completed and calibrated, that they are operating in accordance with the Contract Documents, and that pretest set points have been recorded.
 e) Certify that the testing and adjusting procedures have been completed and that testing, adjusting, and balancing reports have been submitted, discrepancies corrected, and corrective work approved.
 f) Complete System Verification Checklists and manufacturer’s pre-start checklists prior to scheduling acceptance and operating tests.
 g) Provide a plumbing system technician to assist during functional performance testing.
 h) Participate in the functional performance tests as required to achieve design intent.
 i) Where necessary, provide dates when governing authorities testing will be conducted
 j) Participate in O&M Training as required by project specifications.
 k) Obtain O&M data on all equipment and assemble in binders as required by the project specifications.
 l) Conduct a maintenance demonstration with hands-on training. Submit record drawings as required by the project specifications prior to the training. Demonstrate proper use, operations and routine maintenance of the elevators and components.
 m) Submit completed System Verification Checklists documenting that the work has been completed in accordance with the plans and specifications and that they are functioning as designed.
 n) Provide written certification documenting that the following work has been completed in accordance with the plans and specifications and that they are functioning as designed. This certification must be submitted prior to the final verification.
 o) Provide set of record as-built drawings to the Engineer of Record for inclusion into record documents.

3. Start-Up:
 a) The installing contractor shall perform start-up of the appropriate plumbing systems. The appropriate contractors and/or manufacturer’s representative shall be on-site to perform start-up. No system will be started until the manufacturer’s checklists have been completed. Start-up will be performed according to the manufacturer’s
recommended procedures. The Owner will visit the site to review completeness of installation in conjunction with progress meetings prior to starting equipment.

b) Contractors involved in installation, fabrication, manufacturer, control, or designs of equipment shall be present at the time of start-up. A factory-authorized technician shall be on site to start equipment when required by the specifications. This will minimize delays in bringing equipment on line and expedite acceptable functional performance.

4. Functional Performance Tests:
 a) Scope of plumbing testing shall include entire plumbing installation, from central equipment for hot water generation through distribution systems to each fixture and appliance. Testing shall include measuring capacities and pressures of operational and control functions.
 b) Each major system will be tested. This will be coordinated and witnessed by the Owner. Witnessing the functional performance tests will serve as a compliment to the O&M Training. No tests will be performed until the system and related subsystems have been started and documented through point-to-point checklists and other documentation.
 c) The Functional Performance Tests shall include the following, with the Commissioning Agent (if applicable) and Owner:
 (1) Water Heating Systems.
 (2) Pipe system cleaning, flushing, hydrostatic tests, and chemical treatment.
 (3) Energy Supply System (heating hot water).
 (4) Plumbing Distribution Systems.

5. Owner Orientation and Training
 a) The installing contractor shall provide the Owner comprehensive training in the understanding of the systems and operation and maintenance of each major piece of equipment.
 b) The installing contractor or manufacturer’s representative will provide the training. This training should include hands-on operational training. The Owner may choose to videotape this training for future use.
 c) The training shall include start-up, operation in all modes possible, shut-down and any emergency procedures.
 d) The training shall include a review of all systems using simplified system schematics including riser diagrams, valve locations, and equipment locations.
 e) The installing contractor shall provide the Owner with copies of all inspections and acceptance.
 f) The manufacturer's representative shall provide the instructions on each major piece of equipment. These sessions shall use the printed installation, operation and maintenance instruction material included in the O&M manuals and shall include a review of the written O&M installations emphasize safe and proper operating requirements and preventative maintenance. Qualified service engineers employed by the manufacturers or their qualified sales representatives shall do equipment training. The operation and function of the equipment in the system shall be discussed. The start-up and shut-down modes of operation shall be demonstrated. Emergency operations shall be demonstrated.
g) The Contractor shall attend all sessions and shall add to each session any special information relating to the details of installation of the equipment as it might impact the operation and maintenance.

h) The installing contractor shall assist in the coordination of yearly testing, calibrating, and servicing as specified in the contract documents.

22 11 16 Domestic Water Piping

1. Domestic hot and cold piping above the ground shall be Type "L" copper conforming to ASTM B-88. Fittings shall be wrought type joined with 95-5 "LEAD FREE" solder.

2. Domestic water piping below the ground shall be Type "K" copper conforming to ASTM B-88. Fittings shall be heavy cast brass.

3. All domestic hot water, domestic cold water, and rainwater conductors shall be insulated to prevent heat loss or the formation of condensation. All central chilled domestic water system piping shall be insulated. Minimum insulation thickness shall be in accordance with the 2009 International Energy Conservation Code as required to prevent condensation.

22 11 19 Domestic Water Piping Specialties

1. Valves:
 a) Up to and including Two and One-half (2-1/2) inches: Full port, 3-piece, bronze body ball valves with a stainless steel ball and Teflon seat conforming to ASTM B-61 or B-62.
 b) Three (3) inches and above: High performance butterfly valves, Iron wedge gate valve with flanged, outside screw and yoke, bolted bonnet and bronze trim. Valve shall conform to Federal Specifications MSS SP-70 and WW-V-58 Class 1, Type 1.
 c) Check valves shall be swing type bronze body up to and including 2-1/2 inches. Above 2-1/2 inches use water, bronze body type designed for installation between ANSI, B16.1 flanges.

2. All plumbing equipment (heat exchangers, water heaters, etc.) isolation valves are to be upstream of valve assembly sets on supply and downstream of valve assembly sets on return. Valve assembly sets consists of unions, strainers, thermostats, P/T wells, etc.

3. All domestic water systems shall be provided with shock absorbers located and installed per manufacturer's recommendation and good engineering practices. Shock absorbers shall be equal to Jay R. Smith Series 5000. Air columns with or without charging valves are prohibited. Provide valves to replace absorber without causing system shutdown.

4. Provide wall hydrants with built-in vacuum breaker on the exterior of all buildings. A minimum of one (1) hydrant shall be installed on each building face and the maximum distance between hydrants shall not exceed 100 feet. The wall hydrants shall be non-freeze type housed in a lockable wall box, Zurn Model Z1305-VB, or approved equal.
5. All piping serving ADA sinks/lavatories are to be fitted with antimicrobial molded undersink safety covers. The covers shall be Trubro, model Lav Guard 2, or approved equal.

6. All domestic water services must be provided with a backflow prevention device of a type and in a location in accordance with the Philadelphia Water Department Cross Connection Control Program.
 a) The basis of design shall be Apollo Valves, Model 4ALF-21X-03 reduced pressure principle backflow preventer, where “X” will depend on the size of the pipe (no substitutions).
 b) The basis of design configuration shall include two full-size backflow preventers installed in parallel to permit continuous, uninterrupted water service during testing and maintenance.
 c) Each assembly shall be provided with FM-approved epoxy-coated flanged OS&Y gate valves.
 d) A sanitary drain shall be provided directly below the assemblies for relief valve discharge.

22 13 16 Sanitary Waste and Vent Piping

1. All soil and waste piping belowground shall be service weight cast iron conforming to ASTM A-74. Joints shall be lead and oakum type.

2. All soil and waste piping aboveground shall be service weight cast iron conforming to ASTM A-888. Joints shall be no-hub type.

3. Individual lavatory, urinal and indirect waste piping may be Type DWV copper between the fixture and horizontal branch main when such piping is located above grade. Shower piping should be not less than 2-inch from drain to riser.

4. All systems shall be provided with cleanouts where the sanitary or waste main change direction and in all straight mains on a maximum spacing of 50 ft. Provide access covers in finished areas.

5. Prime Contractor shall confirm floors are properly slopped towards floor and area drains in Mechanical Rooms, Restrooms, Areaways, etc.

6. A/E is to design the sanitary system with wall or floor cleanouts in restroom areas.

22 15 19 General Service Packaged Air Compressors and Receivers

1. Air compressors are to be a reciprocating compressor type with oil less airside.

2. Provide air dryers, air filters and coalescing filters as required per project.

3. Approved manufacturer are Ingersoll Rand and Quincy.
22 33 00 Electric Domestic Water Heaters

1. Electric type water heaters are to be used when natural gas is not available or as point of use, i.e. kitchenette. Approved manufacturer are Bradford White Corporation, AO Smith Corporation and Rheem Manufacturing Company.

2. Storage tank construction to be glass lined steel tank, electric storage type, less than 120 gallon capacity.

3. Heater components to be included but not limited to the following:
 a) Extruded magnesium anode.
 b) ASME rated, bronze temperature and pressure relief valve.
 c) Drain valve.
 d) Inlet and outlet piping connections.
 e) High density glass fiber insulation meeting criteria for heat loss efficiency.
 f) Steel jacket with baked enamel finish.
 g) Fused on alkaline borosilicate composition glass lining.
 h) Temperature Control Limit Switch with manual reset if temperature reaches 190 deg. F.
 i) Hinged compartment housing.
 j) Control circuit transformer.
 k) Transformer fusing.
 l) Magnetic contactors.
 m) Immersion style operating thermostat.
 n) Element fusing.
 o) Medium watt density, commercial grade, incoloy sheathed flange mounted elements with pre-wired terminal leads.

22 34 00 Fuel-Fired Domestic Water Heaters

1. A/E is responsible for identifying and documenting what natural gas pressure and pipe main is locally available at the building with PGW. This information shall be used for determining overall equipment load and pipe sizing. No equipment is to be selected below 4.5 in. w.g., which is PGW’s minimum guaranteed system supply.

2. Storage water heaters and instantaneous water heaters if all the following are not exceeded:
 a) A heat input of 200,000 BTUs/hr (58.6 kW).
 b) A water temperature of 210°F (99°C).
 c) A nominal water-containing capacity of 120 gallons (454 L).
 d) Approved manufacturers are Bradford White Corporation, A.O. Smith Corporation and Rheem Manufacturing Company.

3. Storage water heaters and instantaneous water heaters that exceed the design criteria listed Paragraph 2 above.
 a) Approved manufacturers are Bradford White Corporation, Lochinvar LLC, A.O. Smith Corporation, Rheem Manufacturing Company, and RBI.
4. All heaters, and installation thereof, falling under Paragraph 2, shall be equipped with ANSI/ASME CSD-1 controls and comply with the Pennsylvania Department of Labor & Industry Boiler and Unfired Pressure Vessel Regulations, Title 34, Part I, Chapter 3a.

5. Storage tank construction to be gas fired, glass lined steel tank, storage type, less than 120 gallon capacity.

6. Heater components to be included but not limited to the following:
 a) Gas fired burner:
 (1) Automatic gas pilot assembly, pilot valve and gas pilot pressure reducing valve.
 (2) Manual gas cock.
 (3) Hydraulic motorized gas valve.
 (4) Gas pressure reducing valve.
 (5) Flame safeguard.
 b) Fused on alkaline borosilicate composition glass lining.
 c) ASME rated steel tank on channel steel skid.
 d) High density glass fiber insulation meeting criteria for heat loss efficiency.
 e) Steel jacket with baked enamel finish.
 f) Extruded magnesium anodes.
 g) Flame inspection port.
 h) Handhold cleanouts.
 i) Inlet and outlet piping connections.
 j) Drain valve.
 k) ASME rated, bronze temperature and pressure relief valve.
 l) Hinged control compartment housing.
 m) High temperature limit control with manual reset.
 n) Upper and lower thermostats.
 o) Combination temperature and pressure gauge.
 p) Low water cutoff.
 q) Draft regulator.

7. Contractor is responsible for requiring a variance from the Commonwealth of Pennsylvania along with any other requirements for Unfired Pressure vessels installations. Unfired pressure vessels will not satisfy the code clearance requirements (minimum of 18 inches in front, at rear and on both sides, and 30 inch in front of manhole cover. FM Global will inspect the vessel installation upon completion.

22 42 00 Commercial Plumbing Fixtures

1. Water closets and urinals are to be wall mounted, siphon jet design using flush valves. Flush valves and fixtures shall be water conserving type.
 a) Bases of Design:
 (1) Water Closet Fixture: American Standard or Kohler.
 (3) Urinal Fixture: American Standard or Kohler.
(4) Urinal Flush Valve: Solan, Optima G2 Plus Series models 8186 or 8186-0.5 (no substitutions).

2. Lavatories shall be of the wall mounted in public restrooms and of the counter mounted in private restrooms.
 a) Bases of Design:
 (1) Wall Mounted: American Standard or Kohler.
 (2) Counter Mounted: American Standard or Kohler.

3. University does have existing floor mounted water closets in various facilities. Replacement water closets are to be American Standard or Kohler and style is to match existing.

4. Where hands-free lavatory faucets are specified, fixtures shall be centrally wired automatic faucets, Sloan Optima EAF-150-ISM-IC (no substitutions). At least one lavatory in all public restrooms shall be equipped with a manual faucet by Delta.

5. Dormitory lavatory fixtures shall be single lever Delta or approved equal and equipped with vandal proof aerator limiting water flow to 0.5 gallons per minute. Aerator shall be Neoperl® PCA® Spray Faucet Attachment – 0.5 gpm max (Part number B9.65F3.1).

6. Shower heads shall be water conserving type (1.5 gpm), similar to Zurn, Water Saver, Model Z7000-S9.

7. All faucets for laboratories and miscellaneous locations shall be manufactured by Delta.

8. Accessible piping within base cabinets shall be chrome-plated and equipped with metal stop valves having waste cups.

9. Approved manufacturer for plumbing fixture carriers is Jay R. Smith and Zurn.

10. Janitor Closet fixtures and accessories:
 a) Basis of Design:
 (1) Basin: Size 36 inch x 24 inch or 24 inch x 24 inch, 10 inches high, molded stone, 3 inch stainless steel drain with dome strainer and lint basket. Fiat model MSB-3624 or MSB-2424.
 (2) Faucet: Rough chrome plated cast brass, ceramic cartridges, integral stops and check valves, brass vacuum breaker, adjustable wall brace and pail hook, 4 arm handles with indicators, and 3/4 inch hose thread spout. Speakman SC-5811-RCP.
 (3) Hose and Hose Bracket: Heavy duty 30 inch long, flexible cloth reinforced rubber hose with chrome plated threaded connector at one end. Stainless steel hose bracket with rubber hose grip. Fiat 832-AA.
 (4) Mop Hanger: Size 24 inch x 3 inch and stainless steel with three rubber grips. Fiat 889-CC.
 (5) Bumper guard: Molded vinyl length to match receptor dimensions. Provide along all open sides of receptor. Fiat E-77-AA.
(6) Wall guard: Heavy 16 gauge type 430 stainless steel with No. 4 finish, two or three panel arrangement to protect adjacent wall surface from water damage. Fiat MSG series.

22 45 00 Emergency Plumbing Fixtures

1. The design and installation of Emergency Plumbing Fixtures and associated systems shall comply with the Laboratory Design Standard 2013. A copy of this Standard & Design Guide is included in Appendix A.

2. All emergency eye/face wash and safety shower fixtures shall be provided with a thermostatic mixing valve. Mixing valves shall be from same manufacturer to ensure proper sizing.

3. Eye/face Wash: Deck mounted auto-flow with 90 degree swivel type. Approved manufacturer and model is Guardian model G1774 (no substitutions).

4. Safety Showers:
 a) Horizontally mounted: All stainless steel with pull handle. Approved manufacturer and model is Guardian model G1691 (no substitutions).
 b) Free standing: All stainless steel with pull handle. Approved manufacturer and model is Guardian model G1696 (no substitutions).

22 47 00 Drinking Fountains and Water Coolers

1. Water coolers to be a combination bottle fill and bubbler type.
 a) Single water coolers shall be Halsey Taylor, Model HTHB-HAC8.
 b) Double water coolers shall be Halsey Taylor, Model HTHB-HAC8BL.

2. Bottle filling station shall be Halsey Taylor, Model HTHBSM.

22 61 00 Compressed-Air Systems for Laboratory and Healthcare Facilities

1. All new and renovated laboratory compressed-air systems shall be designed, installed, tested/certified in strict accordance with the City of Philadelphia approved International Building Codes. Coordinate project specification with University Facilities and Environmental Health and Safety Departments in regards to project requirements.

2. All piping shall be labeled in accordance with OSHA and ASME A13.1.

3. Piping 4-inch and smaller: Seamless, Type L (ASTM B88) hard drawn copper tubing. Where material compatibility issues between the piping and gas, suitable materials must be utilized.

4. Joints to be solder with grade HB lead-free solder in accordance with ASTM B32, ANSI/AWS A5.8 and Federal Specification QQ-B-654A Grade III.

5. Fittings to be wrought copper, solder cup ends in accordance with ANSI B16.22.
6. System shall be tested and certified in accordance with International, National, and local code requirements.

22 62 00 Vacuum Systems for Laboratory and Healthcare Facilities

1. All new and renovated laboratory vacuum systems shall be designed, installed, tested/certified in strict accordance with the City of Philadelphia approved International Building Codes. Coordinate project specification with University Facilities and Environmental Health and Safety Departments in regards to project requirements.

2. All piping shall be labeled in accordance with OSHA and ASME A13.1.

3. Piping: Seamless, Type L (ASTM B88) hard drawn copper tubing. Where material compatibility issues between the piping and gas, suitable materials must be utilized.

4. Joints to be solder with grade HB lead-free solder in accordance with ASTM B32, ANSI/AWS A5.8 and Federal Specification QQ-B-654A Grade III.

5. Fittings to be wrought copper, solder cup ends in accordance with ANSI B16.22.

6. System shall be tested and certified in accordance with International, National, and local code requirements.

7. Approved vacuum pump manufacturer is Busch Mink MM.

22 63 00 Gas Systems for Laboratory and Healthcare Facilities

1. All new and renovated laboratory gas systems shall be designed, installed, tested/certified in strict accordance with the City of Philadelphia approved International Building Codes. Coordinate project specification with University Facilities and Environmental Health and Safety Departments in regards to project requirements.

2. All piping shall be labeled in accordance with OSHA and ASME A13.1.

3. Tubing: Seamless, Type K (ASTM B819) hard drawn copper tubing, factory oxygen cleaned, nitrogenized, capped and bagged. Where material compatibility issues between the piping and gas, suitable materials must be utilized.

4. Joints to be brazed with alloy classification BCuP5 (15 percent silver, 5 percent phosphorous, 80 percent copper), with continuous nitrogen gas purge in accordance with ASTM B32, ANSI/AWS A5.8 and Federal Specification QQ-B-654A Grade III.

5. Fittings to be wrought copper, solder cup ends, factory oxygen cleaned, nitrogenized, capped and bagged, in accordance with ANSI B16.22.
6. All gas systems shall be tested and certified in accordance with International, National, local code, and PGW requirements.
XIII. DIVISION 23 – HEATING, VENTILATING, AND AIR-CONDITIONING

1. General HVAC information:
 a) All HVAC systems or units serving common or public spaces (corridors, lounges, lobbies, multipurpose rooms, laundry rooms, exercise rooms, etc.) shall be installed in secure locations that are inaccessible to the occupants or to the public.
 b) The secure locations required above shall be mechanical rooms or closets designed specifically and exclusively for HVAC equipment installations. HVAC systems or units shall not be installed in custodial, telecommunications, or other closets unless the system or unit being installed serves only that closet.
 c) All HVAC systems or units serving common or public spaces shall be controlled by one of the University standard building automation systems (Andover or Automated Logic) and space temperature shall be monitored by vandal-proof, flush-mount, stainless steel wall plate sensors. Under no circumstances shall a conventional thermostat be utilized in common or public spaces.
 d) If a building automation system is not otherwise part of the mechanical system design, a building automation system shall be provided and installed exclusively for HVAC control in all common or public spaces. The building automation system shall meet all of the requirements for building automation systems that are specified in Section 25 50 00 “Integrated Automation Facility Controls”.
 e) All equipment installed in the University should be controlled from centrally-located Building Automation Systems. The Integrated Automation Facility Controls Section, contained herein as Section 25 50 00, describes the specific minimum control requirements associated with the central control system. The University has both Andover and Automated Logic Controllers; specifications should be written to allow for either system.
 f) Temperature of all rooms or zones shall be monitored and controlled through the Building Automation System.
 g) All billed electrical, water, steam and fuel services shall be metered into the Building Automation System. Prime Professional is to coordinate with University Facilities in regards to specifying either direct hard-wired connections or integration to the BAS system, i.e. Modbus.
 h) The assigning of responsibility for the cutting and patching of all work must be coordinated by the entire design team and be thoroughly and succinctly detailed in the contract documents.
 i) Coordination of the design for the location of all floor and wall openings, lintels, equipment pads, etc. is the responsibility of the professional engaged to design the system which penetrates the floor, wall or roof.
 j) Exterior HVAC installations must consider the aesthetics of the building, noise pollution, accessibility, maintainability, safety regulations and health effects.
 k) All new equipment is to be provided with software and hardware necessary for University Facilities to have the ability to troubleshoot and/or configure any field equipment. Equipment manufacturer is to provide software and hardware as part of closeout package.
 l) The following is a list of prohibited installations and require University approval for their installation:
 (1) Refer to part 8 under section 25 00 00 for additional prohibited items.
(2) Plug valves (except as specified herein for natural gas service).
(3) Triple-duty (combination) valves used for shutoff service – only single devices are permitted.
(4) Press-end valves.
(5) Groove-end valves.
(6) Cast press fittings.
(7) Press fittings larger than 2 inch NPS.
(8) Cast iron fittings (use malleable iron or forge steel fittings).
(9) Standard-performance butterfly valves (use high performance valves only).
(10) HVAC paddle-type flow switches (use differential pressure or electronic flow switches).
(11) Dielectric unions (use dielectric waterways).
(12) Gate valves (except as specified herein for steam service).
(13) Balancing valves used for shutoff service.
(14) Schedule 10 stainless steel pipe (use Schedule 40).
(15) Butt-welded seam steel pipe (use electric resistance welded or seamless pipe).
(16) Bullhead piping connections.
(17) Insertion flow meters (use inline meters only).
(18) Paddle-wheel (turbine) flow meters.
(19) Internally-lined duct systems where it is practical and feasible to utilize other sound attenuating devices.
(20) Fiberglass duct systems.
(21) Dual temperature systems.
(22) Dual duct systems.
(23) High static pressure systems.
(24) Air flow measuring devices other than multi-point thermal dispersion or Pitot traverse stations that are selected and installed in compliance with AMCA Standard 203.
(25) Wireless control elements; i.e. valves, dampers, relays, etc.
(26) Fan coil and through-wall unit systems.
(27) Induction units.
(28) Multi-zone units.
(29) Fan-powered terminal units.
(30) Unit ventilators.
(31) Trane® water-source heat pumps.
(32) Chilled beams.
(33) Any type of energy recovery wheel.
(34) Heat wheels utilizing silica.
(35) Dependence on energy recovery for required capacity.
(36) The installation of ductwork, pumps, etc. on roofs.
(37) Single-wall rooftop air handlers.
(38) Electric heat in air handlers.
(39) Equipment exposed to weather, except exhaust fans from toilets and fume hoods and double-wall rooftop air handlers.
(40) Vertical pumps.
(41) Underground storage tanks.
(42) Emergency generators equal to, or larger than, 1,000 HP (air permit ramifications).

(43) Atriums that necessitate the use of smoke control systems for building code compliance.

(44) Ethylene glycol is **prohibited**, except in the LeBow Engineering Center, Center for Automation and Bossone Research.

m) Accessibility

1. All devices shall be within reach for operation without dismantling equipment except access doors.

2. Equipment and devices located six feet or more above the floor shall be accessible through platforms protected by guard rails.

3. All valves, balancing dampers, and miscellaneous materials located above ceilings must be made accessible by installing access doors. Equipment and devices above ceilings may not be located above counters, cabinets, or stationary room furnishing. Materials above accessible lay-in ceilings must be located from below the ceilings through the installation of ceiling markers applied to the underside of the ceilings. The ceiling marker shall be a red adhesive circle applied to the ceiling and shall have a diameter of 3/8-inch.

4. Design should not install rotating equipment above ceiling and should provide for an equipment room, (VAV and CAV thermal units are an exception). During the Schematic Design Phase, the A/E shall indicate if an exception is required. Equipment approved for above ceiling location shall be serviceable directly from ladder or a service platform provided.

5. Pipe and duct spaces shall be designed to adequately house the intended quantity of materials and to allow for a minimum future expansion of 25%. The shaft space shall have minimum interior dimensions of 2'-0" square. Hinged and locked access door shall be installed and provide access to the shaft on alternate levels.

6. Make provisions for chain hoist above all motors and pumps weighing over 75 lbs.

n) All mechanical rooms and electrical substations shall be provided with emergency lighting and electrical outlets.

o) All mechanical rooms shall be provided with minimum 4-inch floor drains near equipment containing water, strainers and blow-downs. Specialized equipment may require larger drain. Trap primers shall be installed in accordance with Section P-1204.3 of the City of Philadelphia Plumbing Code. Non-electronic trap primers are preferred. Approved manufacturers are Jay R. Smith and Precision Plumbing Product Company.

p) Floors in mechanical rooms shall be sloped toward floor drains providing positive unrestricted flow without puddling. Trench drains, curbs, floor penetrations, floor to wall connection details must be included to prevent flooding to floors below during routine maintenance or pipe breaks.

q) Consideration must be given to the proximity of outdoor air intakes to relief outlets, exhaust outlets, streets, and loading docks. Outdoor air intakes located below grade are **prohibited**. If outdoor air intake is relocated to be located below grade due to renovation, Contractor shall dig a well that is 12 inches below the louver, 6 inches wider than the louver and 24 inches from the louver face with a grate and CMU well walls.

r) Strainers and blow-downs shall be installed away from electrical equipment.

s) All equipment must be installed on raised concrete pads. Pads shall be a minimum of 4-inches high.
2. All equipment is to be individually scheduled.

3. All new buildings and major renovations are to be designed to include baseboard heat at the exterior wall.

23 01 30.51 HVAC Air Distribution System Cleaning

1. The cleaning of air ducts shall be performed in accordance with ACR 2013, “Assessment, Cleaning, and Restoration of HVAC Systems”, published by the National Air Duct Cleaners Association.

2. Where possible, access to duct interiors to facilitate the duct cleaning should be made by dismantling the ducts or through existing openings such as supply diffusers, return grilles, duct end caps, and existing service openings.

3. Where new service openings are required to facilitate the duct cleaning, such openings shall be created in accordance with the “Guidelines for Constructing Service Openings in HVAC Systems”, published by the National Air Duct Cleaners Association.

23 05 00 Common Work Results for HVAC

1. Each system shall be designed and installed in accordance with the latest edition of the applicable Standards, including, but not limited to:
 a) NFPA Standards.
 b) Americans with Disabilities Act Accessibility Guidelines (ADAAG).
 d) ANSI Z9.5 American National Standard for Laboratory Ventilation.
 e) American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
 g) ASHRAE Standard 62 Ventilation for Acceptable Indoor Air Quality.
 j) Underwriters Laboratory, Inc. (UL).
 k) Factory Mutual System (FM).
 l) Air Conditioning and Refrigeration Institute (ARI).
 m) Air Diffusion Council (ADC).
 n) Air Movement and Control Association (AMCA).
 o) American National Standards Institute (ANSI).
 q) American Welding Society (AWS).
 r) American Water Works Association (AWWA).
 s) Associated Air Balance Council (AABC).
 t) Cooling Tower Institute (CTI).
 u) Manufacturers Standardization Society of Valve and Fitting Industry (MSS).
2. Provide a statement that all multiple pieces of materials and equipment, i.e., valves, motors, starters, vibration isolators, etc., shall be of one manufacturer.

3. Refer to Section 23 05 53 “Identification for HVAC Piping and Equipment”.

4. Piping General - Specify that the contractor shall:
 a) Remove all burrs and sharp edges from piping.
 b) Run all piping parallel with or at right angles to walls, floors and partitions.
 c) Pitch all piping systems to assure proper drainage and venting. Install drains with hose connections at all low points and 1/2” ball valves at all high points.
 d) The use of pipe bushings is prohibited.
 e) Piping – Steam – All Pressures – Specify the following:
 (1) All steam piping installations shall be performed according to the manufacturer’s instructions, recommended best practices, and ANSI/ASME B31.1 Code for Pressure Piping.
 (2) Pipe reductions or enlargements in horizontal steam lines shall be performed with eccentric reducers.
 (3) All flange gaskets for steam service shall be in accordance with ASME B16.20 for spiral wound gaskets with outer centering ring. Flange gaskets shall be Garlock FLEXSEAL® Style RW, with flexible graphite filler material, or approved equal.
 (4) All flange bolting shall be ASTM A193 Grade B7 with ASTM A194 Grade 2H hex nuts. Bolt length shall be in accordance with ASME B16.5. Neither studs nor threaded rod shall be used.
 (5) All slip-on flanges shall be back-welded.
 (6) All bolt threads shall be lubricated with anti-seize thread compound.
 (7) Make up flanges prior to completing last weld in connecting piping. Alignment of piping shall be correct without forcing, drifting, or bending.
 (8) Make up joints with spiral wound gaskets by taking up bolts until flange faces touch centering rings. Record torque required for flange closure and re-apply after piping warm-up.
 (9) After piping has been maintained at operating temperature for 48 hours, recheck bolting to restore initial bolt tension.
 (10) Electric welding machine grounding conductors shall be connected in a manner that will prevent welding current flow through any steam equipment that contains electronics (such as a steam meter or pressure transmitter), to prevent damage to the equipment's electronics during installation.

5. Pressure vessels: All pressure vessels must conform to ASME Code, Commonwealth of Pennsylvania requirements and shall be constructed, inspected and stamped accordingly.
23 05 13 Common Motor Requirements for HVAC Equipment

1. All motors shall conform to the latest IEEE or NEMA standards relating to characteristics, dimensions, tolerances, temperature rise, insulation, and ratings for noise and vibration.

2. Use NEMA Class B insulation with motor frame amply sized to provide a 1.15 service factor and an ambient of 40ºC maximum.

3. The A/E shall be responsible for coordinating the purchase of motor starting equipment. The documents shall clearly state each trade’s responsibility.

4. To maintain the University’s Green Initiative, and to optimize motor system efficiency, reduce electrical power consumption and costs, and improve system reliability, NEMA Premium® labeled electric motors shall be specified for all motors. Each motor shall achieve the NEMA Premium™ efficiency levels contained in NEMA Standards Publication MG 1-2011 as follows:

| Nominal Efficiencies For "NEMA Premium™" Induction Motors Rated 600 Volts Or Less (Random Wound) |
|---|---|---|---|---|---|---|
| Motor HP | Open Drip-Proof | Totally Enclosed Fan-Cooled |
| | 6-pole | 4-pole | 2-pole | 6-pole | 4-pole | 2-pole |
| 1 | 82.5 | 85.5 | 77.0* | 82.5 | 85.5 | 77.0 |
| 1.5 | 86.5 | 86.5 | 84.0 | 87.5 | 86.5 | 84.0 |
| 2 | 87.5 | 86.5 | 85.5 | 88.5 | 86.5 | 85.5 |
| 3 | 88.5 | 89.5 | 85.5 | 89.5 | 89.5 | 86.5 |
| 5 | 89.5 | 89.5 | 86.5 | 89.5 | 89.5 | 88.5 |
| 7.5 | 90.2 | 91.0 | 88.5 | 91.0 | 91.7 | 89.5 |
| 10 | 91.7 | 91.7 | 89.5 | 91.0 | 91.7 | 90.2 |
| 15 | 91.7 | 93.0 | 90.2 | 91.7 | 92.4 | 91.0 |
| 20 | 92.4 | 93.0 | 91.0 | 91.7 | 93.0 | 91.0 |
| 25 | 93.0 | 93.6 | 91.7 | 93.0 | 93.6 | 91.7 |
| 30 | 93.6 | 94.1 | 91.7 | 93.0 | 93.6 | 91.7 |
| 40 | 94.1 | 94.1 | 92.4 | 94.1 | 94.1 | 92.4 |
| 50 | 94.1 | 94.5 | 93.0 | 94.1 | 94.5 | 93.0 |
| 60 | 94.5 | 95.0 | 93.6 | 94.5 | 95.0 | 93.6 |
| 75 | 94.5 | 95.0 | 93.6 | 94.5 | 95.0 | 93.6 |
| 100 | 95.0 | 95.4 | 93.6 | 95.0 | 95.4 | 94.1 |
| 125 | 95.0 | 95.4 | 94.1 | 95.0 | 95.4 | 95.0 |
| 150 | 95.4 | 95.8 | 94.1 | 95.8 | 95.8 | 95.0 |

5. Current density design of motors shall be limited so that overload protection provided by standard motor starters will be adequate to prevent overheating during stall or slightly prolonged acceleration.

6. Starters must be of the combination type (circuit breaker/starter) complete with integral transformers, thermal overload protections, 120 volt coils, low voltage protection, indicating pilot lights (neon or LED type), hand-off-automatic switches and all necessary auxiliary
contacts.

7. All motors shall be mounted to the rotating equipment they serve.

8. Wet or outdoor applications shall be provided with TEFC motors only.

9. All motors on cooling towers, air handling units and energy recover units in excess of 2,000 CFM, and circulating pumps shall be equipped with variable speed drives equipped with integral electrical bypass or full electromechanical bypasses. Manufacturer shall only be ABB, with appropriate models of ACH550-VCR, ACH550-VDR, ACH550-BDR or ACH550-BCR.

10. Provide shaft grounding kit for field installation:
 a) All motors controlled by Variable Frequency Drives shall be equipped with AEGIS Shaft Grounding Ring kit to be installed by motor or equipment manufacturer or installed in the field by contractor.

11. Motors: Wire shaft ground kit on motors for use with variable frequency drives:
 a) Ensure AEGIS Shaft Grounding Kit is installed on motor in accordance with manufacturer’s recommendation.
 b) AEGIS Shaft Grounding Ring (SGR) is bolted directly to the motor end bracket or installed with conductive epoxy to ensure ground connection from the AEGIS SGR to motor frame.

23 05 16 Expansion Fittings and Loops for HVAC Piping

1. Use expansion loops in lieu of expansion joints. Approval for the use of expansion joints must be obtained from the University’s Project Manager prior to the use of such. The desired methods of expansion compensation in underground steam piping, in order of preference, are as follows:
 a) Loops
 (1) All loops shall be constructed with long radius elbows welded into the line.
 (2) All loops must be subjected to cold spring during installation to approximately one-half of the total compensation between hot and cold conditions.
 b) Ball joints.
 c) Telescoping slip joints.

2. Pipe Alignment Guides: All piping which must be provided with expansion loops shall be fitted with pipe guides in the quantity and spacing recommended by the manufacturer. Guides shall be equal to Anvil Fig. 255 for pipe sizes 6" and below and Anvil Fig. 256 for piping above 6". Guides shall be firmly attached to the building structure.

3. Anchors: Securely anchor all piping utilizing expansion loops to the building structure with steel angles, properly braced and welded to the pipe. A Structural Engineer shall review all loads imposed upon the structure by the piping system. The contractor shall be required to submit shop drawings detailing the proposed anchors for review.
23 05 19 Meters and Gages for HVAC Piping

1. All devices, piping, valving, relays, end switches, control components, power wiring, control wiring and interlock wiring shall be provided as required to accomplish the sequence of operation for the various pieces of equipment to provide a fully operational system. Refer to Division 25 for specific details and information.

2. Pressure and Temperature Ratings:
 a) Each meter and gauge shall be rated and suitable for the piping system that it is being installed in.
 b) Minimum upstream and downstream straight pipe diameters for meters shall be provided per manufacturer’s published recommendations.

3. Pressure Gauges – Provide and install all gauges in such a manner as to be easily read from normal observation positions. Gauges shall be as follows:
 a) Dial Size: 4-1/2 inch.
 b) Accuracy: 1/2% of Full Scale, Grade 2A, ASME B40.100.
 c) Case: Black Phenolic, Solid Front.
 d) Ring: Threaded Reinforced Black Polypropylene.
 e) Window: Glass.
 f) Pointer: Micrometer Adjustable.
 g) Movement: Rotary, 400 SS, Teflon-Coated Pinion Gear & Segment.
 h) Bourdon Tube & Socket: Type 316L Stainless Steel.
 i) Optional Features: PLUS! Performance.
 j) Manufacturer: Ashcroft.
 k) Model: 45-1279-SS-(Connection Size & Type)-XLL-(Pressure Range).
 l) *Alternate Manufacturer: Treice.
 n) *Each gauge must be supplied with a Treice Model 870-13 or 870-16 impulse dampener.

 NOTE: All pressure gauges utilized for steam service must be equipped with a coil syphon constructed of 316 stainless steel or seamless Schedule 80 carbon steel.

 o) Select range in such a manner that the operating pressures is at the mid-point of the scale. Pressure ranges shall be as follows:
 (1) Refrigerant: 30” to 0 lbs. to 150 lbs.
 (2) Steam, 0 to 20 lbs.: 0 lbs. to 30 lbs.
 (3) Steam, 21 to 60 lbs.: 0 lbs. to 100 lbs.
 (4) Steam, 61 to 150 lbs.: 0 lbs. to 200 lbs.
 (5) Steam, 151 to 250 lbs.: 0 lbs. to 300 lbs.
 (6) Fluids, Suction Side of Pump, Open Systems: 30” to 0 lbs. to 150 lbs.
 (7) Fluids, Suction and Discharge Side of Pump, Closed Systems: 0 lbs. to 100 lbs.
4. Thermometers – Provide and install all thermometers in such a manner as to be easily read from normal observation positions. Thermometer shall be as follows:
 a) Dial Size: 5 inch.
 b) Accuracy: 1% of Full Scale, Grade A, ASME B40.3.
 c) Stem & Case: 304 Stainless Steel, Hermetically Sealed.
 d) Stem Diameter: 0.250 inch.
 e) Window: Polycarbonate.
 f) Connection: 1/2 inch NPT Union.
 g) Location: Everyangle®.
 h) Manufacturer: Ashcroft.
 j) Alternate Manufacturer: Treice.
 k) Alternate Model: B856-(Stem Length Code)-(Range Code)-SWV.

 NOTE: All thermometers installed in piping or pipelines shall be supplied with threaded, stepped shank, 316 stainless steel thermowells of suitable dimensions for the thermometer being supplied.

 l) Select range in such manner that the operating temperature is at the mid-point of the scale. Thermometer ranges shall be as follows:
 (1) Steam, 0 to 20 psi: 50°F to 300°F.
 (2) Steam, 21 to 150 psi: 50°F to 400°F.
 (3) Steam, 151 to 250 psi: 50°F to 400°F.
 (4) Condenser water: 50°F to 120°F.
 (5) Chilled water: 30°F to 100°F.
 (6) Heating water: 50°F to 250°F.
 (7) Closed Circuit Cooler: 60°F to 120°F.
 (8) Ice Storage water: 0°F to 90°F.

23 05 29 Hangers and Supports for HVAC Piping and Equipment

1. The following hanger types shall be specified for the support of piping within buildings:
 a) All pipe hangers shall be sized to fit over insulated piping. Provide the following insulation protection devices:
 (1) Up to and including 6" - Insulation shield equal to Anvil Fig. 167.
 (2) 6" and above - Pipe insulation protection saddle equal to Anvil Fig. 160.
 (3) Alternate: Insulated piping above 2" - Rigid hydrous calcium silicate insulation having a compressive strength of 200 PSI may be used at hanger locations on piping above 2". Insulation shields equal to Anvil Fig. 167 must be used in conjunction with the insulation.
 b) All hangers and supports directly in contact with the piping must be of compatible materials.
 c) Horizontal piping up to and including 6" nominal pipe diameter:
 (1) Ceiling Hung - Adjustable clevis hangers equal to Anvil Fig. 260.
 (2) Floor, wall or rack supported - offset pipe clamp equal to Anvil Fig. 103.
d) Horizontal piping 8" through 12":
 (1) Ceiling Hung - Adjustable steel yoke pipe roll equal to Anvil Fig. 181.
 (2) Floor or rack supported - Adjustable pipe roll stand with steel base plate equal to Anvil Fig. 274P.

e) Horizontal Piping above 12":
 (1) Ceiling Hung – Adjustable steel yoke pipe roll equal to Anvil Fig. 181.
 (2) Floor or rack supported - Adjustable pipe roll with base equal to Anvil Fig. 274P.

f) Spring hangers shall be used within mechanical rooms to support piping connected to rotating equipment as follows:
 (1) Up to and including 6" nominal pipe size: Ceiling mounted, pre-engineered spring pipe hanger equal to Anvil Fig. B-268 Type A.
 (2) Above 6" manual pipe size: Piping cushion for pipe rolls equal to Anvil Fig. 178.

2. Hanger Spacing: Piping shall be supported at distances not exceeding the spacing specified in Table 305.4 of the 2009 International Mechanical Code.

3. All hub or joint pipe shall be supported within the above recommendations for steel and at each joint.

4. Polyvinyl chloride pipe (PVC) shall be supported at intervals recommended by the manufacturer for a 120°F fluid temperature.

5. All piping which must pass to within six (6) feet, measured horizontally, from all switchboards, panels, metering assemblies, buss ducts, etc., shall be provided with watertight sheet-metal enclosures to completely protect such equipment in the event of leakage. Provide a drain tapping at the low point of the enclosure and pipe such to the nearest drain.

23 05 33 Heat Tracing for HVAC Piping

1. Install heat trace on all cooling tower condenser water supply and return, equalization, drain, overflow and cold water make-up water piping located outdoors.

2. Install prior to insulating piping systems.

3. Select cable lengths to maintain 40°F fluid in pipe for freeze protection, with an outdoor ambient at -20°F.

4. Provide system with necessary stand-off and cable tie kits.

5. Provide monitoring and alarming via BAS system to prove system is drawing current as opposed to monitoring contract in a heat trace controller.

6. Approved manufacturer is Raychem or approved equal. The following components and model numbers are for a Raychem system:
 a) Braided Self Regulating Cable: (watt pre linear foot)XL-(voltage)-CR.
 (1) Watt per linear foot: Available in 5, 8, or 12.
 (2) Voltage (1 or 2): 1 represents 120V (5 and 8W/ft.). 2 represents 208/240/277V (12W/ft).
 b) Power Connection Kits: Rayclic-PC.
 c) Splices: Rayclic-S.
 d) Tees: Rayclic-T.
 e) End Seal Kits: Rayclic-E.
f) Lighted End Seal: Rayclic-LE.
g) Binding Tape: GT-66.
h) Aluminum Tape: AT-180.
i) Indicating Strip Pipe Label: ETL.
j) Controllers:
 (1) Digitrace 910 controller with ambient sensing RTD-200 for single circuit systems.
 (2) Digitrace 920 with ambient sensing RTD-200 for systems between 2 and 8 circuits.
 (3) Digitrace ACS-30 with ambient sensing RTD-200 for systems above 8 circuits.
 (4) Controller is to be sized to allow for extra control points, for 25% growth.

23 05 53 Identification for HVAC Piping and Equipment

1. All piping and duct systems shall be required to be labeled to comply with OSHA and ANSI/ASME A13.1-2007 standards for the identification of systems.

2. The marking system shall identify the contents, size, direction of flow, and operating characteristics (i.e. pressure and/or temperature).

3. All valves, controls and dampers shall be labeled using plastic I.D. tags securely connected to the specific item using brass chain or "S" hooks. The contractor shall provide a list of each tagged item and its function and a valve chart in the main Mechanical Room.

4. All equipment must be identified using phenolic nameplates and labeled in accordance with the nomenclature used on the drawings and compatible with the MIMS System.

23 05 93 Testing, Adjusting, and Balancing for HVAC

The following paragraphs describe the responsibilities of the HVAC Contractor and the TAB Contractor. The A/E shall ascertain that the contract documents accurately reflect such.

1. The HVAC Contractor shall be responsible for the proper testing, adjusting, and balancing of all heating, ventilating and air conditioning systems installed under his contract, including the configuration, installation, and commissioning of the Project-specific automatic temperature control system components and integration into the University BAS.

2. The Contractor shall furnish all labor, materials, instruments and equipment necessary to accomplish the successful completion of all testing, adjusting and balancing work as required for the operation of all systems including the automatic temperature controls, in accordance with the intent of the Construction Documents, Addendums, Bulletins and RFIs.

3. Testing, adjusting and balancing procedures shall not proceed until systems have been completed and are in full working order. The Mechanical Contractor shall operate systems as required for completion of his work.

4. Satisfactory completion of work under this specification is prerequisite to the pre-final review of completed systems by the Design Engineer.
5. The contract documents shall be prepared to include all labor, materials, instruments and equipment necessary to effect complete and proper testing, adjusting and balancing of the heating, ventilating and air conditioning systems, proper operation of complete automatic temperature control system and proper operation of all systems in accordance with the letter and intent of the Construction Documents, Addendums, Bulletins and RFIs. The Mechanical Contractor shall be responsible for providing all such equipment.

6. The University shall engage, under a direct contract or via the CM, an Independent and Qualified Testing and Balancing Organization whose primary source of work is the Testing, Adjusting and Balancing and Adjusting (TAB) of heating, ventilating and air conditioning systems following procedures prescribed by a recognized agency such as the Associated Air Balance Council (AABC) or the National Environmental Balancing Bureau (NEBB).

7. Leakage tolerances are to meet or exceed the following allowances:
 a) Adjust air systems to plus or minus 5 percent, maximums and minimums, from scheduled values indicated.
 b) Adjust air terminal units to within the following tolerances from scheduled air flows:
 (1) Variable Air Volume (VAV) Units: Plus or minus three (3) percent.
 (2) Constant Air Volume (CAV) Units: Plus or minus three (3) percent.
 (3) Air Valve (AV) Units: Plus or minus three (3) percent.
 c) Adjust air terminal units for minimum leakage at design close-off.
 d) Adjust air terminal devices (outlets and inlets) to plus or minus five (5) percent between rooms, except that multiple devices on the same system branch within each room may be adjusted to plus or minus ten (10) percent.
 e) Adjust hydronic systems to plus or minus five (5) percent of design conditions indicated.
 f) Adjust AHU’s and ERU’s to a maximum of one (1) percent of design conditions indicated.

8. TAB contractor must provide a floor plan showing diffuser and register layouts and designations used on balancing report.

23 07 13 Duct Insulation

1. The use of duct liner for acoustical purposes is only permitted with University approval prior to incorporating into a system’s design. Its use will only be permitted where it is impractical or not feasible to utilize other sound attenuating devices, such as inline duct silencers or elbow silencers. Double walled ducts consisting of an outer wall of galvanized sheet metal, an inner wall of perforated galvanized sheet metal with insulation sandwiched between the layers is permitted but may prove cost prohibitive.

2. All supply, return, and relief systems in non-conditioned areas shall be externally insulated.

3. All outdoor air intake ductwork shall be externally insulated.

4. All high temperature (180°F and above) exhaust duct systems shall be insulated to reduce surface temperature to a maximum of 90°F.
5. Duct insulation shall be as required by the 2009 International Energy Conservation Code and referenced standards or the minimum thicknesses listed herein, whichever is the most stringent.

6. Duct systems shall be insulated as follows:
 a) All ducts within the mechanical rooms or exposed in any areas must be insulated with 2-inch thick rigid fiberglass board having an outer fiberglass reinforced foil or Kraft paper face. Minimum density shall be 1.0 lb. The maximum permissible permeability is 0.02 perms.
 b) All ductwork concealed within chases or located above ceilings in non-conditioned spaces (ducted return systems) shall be insulated with 2-inch thick fiberglass duct wrap having an outer fiberglass reinforced foil face. The minimum density of the insulation shall be 1.0 lb. The maximum permissible permeability is 0.02 perms.
 c) All high temperature exhaust duct systems shall be insulated with fiberglass insulation as follows:
 (1) Round duct insulation shall conform to the requirements specified for piping systems. Refer to Section 230719 “HVAC Piping Insulation”. High temperature ducts run in unconditioned areas or exterior to the building need not be insulated unless the formation of corrosive condensation is possible and will result in damage to the system or create a hazard to building occupants or maintenance staff.
 (2) Rectangular ductwork shall conform to the requirements for exposed or concealed duct systems as detailed above and below, and insulated to reduce surface temperature to a maximum of 90°F.
 d) All exterior duct systems requiring insulation (supply, return, process) shall be jacketed with a laminated, flexible, self-adhering, protective jacketing, vapor barrier and weather proofing membrane, having a high performance acrylic adhesive capable of installation with no mechanical attachment.
 (1) Material shall be VentureClad 1577 CW or equal, with finish selected based on availability and desired final appearance of the insulated system.
 (2) Jacketing material is to have a maximum flame spread/smoke developed index of 10/20 per UL 723, a 0.0000 water vapor permeance rating per ASTM E-96, and mold inhibitors incorporated.
 (3) All products shall be UV stable.
 e) All rigid duct insulation shall be secured to the duct as follows:
 (1) Apply bonding adhesive equal to Foster 85-15 adhesive to the entire duct system.
 (2) Impale the insulation to the duct and adhesive using welded pins spaced on 12-inch centers and not less than 3-inches from each edge or corner of insulation. Provide additional pins as required to bond insulation to beaded duct.
 (3) Duct reinforcing materials will not be permitted to be exposed without insulation. Duct support connections shall be sealed water tight where such penetrate the exterior insulation.
23 07 16 HVAC Equipment Insulation

1. All heat exchanging equipment shall be insulated to prevent the formation of condensation on exterior surfaces as well as to prevent excessive heat loss or gain. The following specific pieces of equipment shall be fully insulated with the designated material as described or referenced below:
 a) Steam and hot water to hot water heat exchangers, air separators, full flow filters and compression/expansion tanks as follows:
 (1) The interface between the tube bundle flanges and/or piping flanges to the shell flanges shall be insulated with a removable cover to aid in the maintenance of the exchanger. The removable jackets shall be the same design and material as that specified for strainers, valves and PRV's. Refer to Section 23 07 19 “HVAC Piping Insulation”.
 (2) The shell of the heat exchanger shall be insulated with flexible fiberglass board type insulation having an outer jacket of Kraft paper bonded to aluminum foil and reinforced with fiberglass yarn. All joints and seams shall be covered with a vapor sealing, 3" wide, pressure-sensitive adhesive tape.

2. Chilled Water Tube Bundles - All bundles must be a factory insulated with flexible rubber insulation. The insulation shall prevent the formation of condensation in an atmosphere of 90°F and 90% RH with a chilled water temperature of 42°F. Insulation applied to all water boxes must be removable and constructed in accordance with the requirements of Section 23 07 19 “HVAC Piping Insulation”.

3. All chilled water pumps shall be fitted with removable insulation boxes constructed with 18-gauge sheet metal enclosures, 3/4-inch thick flexible closed cell elastomeric insulation.

23 07 19 HVAC Piping Insulation

1. All steam, condensate, chilled water, glycol and heating hot water piping must be insulated with 1 lb. density fiberglass (calcium silicate on steam and foam glass insulation on chilled water piping in manholes) insulation having an outer jacket of Kraft paper bonded to aluminum foil reinforced with fiberglass yarn. The longitudinal seams of the jacket shall overlap and be sealed using the factory applied pressure sensitive adhesive. Staples are prohibited. Insulation thickness shall not be less than those recommended in 2009 International Energy Conservation Code for the intended service or that required to present the formation of condensation or that required to assure a maximum surface temperature of 80°F, whichever is the most stringent. The insulation shall have a maximum thermal conductivity of 0.23 BTU-IN./HR.-FT.°F at a mean temperature of 75°F.

2. All steam, condensate, chilled water, glycol and heating hot water pipe risers exposed to view in occupied spaces are to be insulated and have a PVC cover. The minimum thickness of the cover will be 30 mil.

3. All non-service/maintenance related fittings (i.e. elbows, tees, etc.) shall be insulated with pre-molded, light impact, UV resistant PVC covers. The minimum thickness of the cover will
Fittings requiring service/maintenance access (i.e. flanges, unions, shut-off valves, check valves, balancing valves, PRV's, etc.) shall be insulated with removable, reusable covers which use straps and buckles to secure the cover in place. The drawings shall detail the interface between the removable cover and the adjacent piping insulation to assure a tight interface which prevents heat loss and the formation of condensation. Covers shall consist of inner and outer walls of 304 SS 0.11" thick mesh, nylon coated 304SS 0.15" threaded seams, 304SS 1/8" thick x 1-1/2" buckles, PTFE/Teflon belting and 304SS I.D. tags.

5. Refrigeration system piping (suction and liquid lines) shall be insulated with flexible closed cell elastomeric insulation with a wall thickness of 1". The insulation shall have a maximum thermal conductivity of 0.27 BTU-IN./HR.- FT.2- °F at a mean temperature of 75°F. Insulation to conform to the 2009 International Energy Conservation Code.

6. Insulation exposed to the outdoors shall be protected by covering such as an aluminum or stainless steel jacket using butted joints and snug fit 15 degree beveled edge aluminum or stainless steel collars. All joints will be coated with mastic on the inside to affect a water tight enclosure.

7. All pre-fabricated underground piping systems shall be designed to meet the above insulation thickness requirements. All piping within manholes and removable covers for valves etc. shall meet the above insulation thickness requirements, and shall be considered an exterior application and therefore be covered with the aluminum jacket.

8. All insulation provided shall conform to all pertinent codes including ASTM E-84, UL 73 and NFPA 255, and shall not exceed a flame spread of 25, fuel contributed 50 and smoke developed 50.

9. Refer to Section 23 07 16 "HVAC Equipment Insulation" for details relating to chilled water pump insulation boxes.

10. Rigid hydrous calcium silicate insulation having a compressive strength of 200 PSI may be used at hanger locations on piping above 2". Insulation shields equal to Anvil Fig. 167 must be used in conjunction with the insulation.

11. Refer to Pipe Insulation Schedule below for minimum insulation size based on pipe size.
12. Piping System Types

<table>
<thead>
<tr>
<th>Piping System Types</th>
<th>Fluid Temp. Range (deg. F)</th>
<th>Insulation Thickness (Inches) for Pipe Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Less than 1</td>
</tr>
<tr>
<td>HEATING SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam Condensate, Pumped Condensate, Steam, Hot Water, & Hot Water/Glycol:</td>
<td>426-477</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>373-425</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>351-372</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>251-350</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>201-250</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>141-200</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>105-140</td>
<td>1.5</td>
</tr>
<tr>
<td>COOLING SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chilled Water, Glycol, Refrigerant or Brine:</td>
<td>40-60</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Below 40</td>
<td>1.5</td>
</tr>
<tr>
<td>OTHER SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler Blowdowns and Drain:</td>
<td>Any</td>
<td>1.5</td>
</tr>
<tr>
<td>Condensate Receiver Unit Vent and other Steam Vents:</td>
<td>Any</td>
<td>1.0</td>
</tr>
<tr>
<td>Cooling Coil Condensate Drain:</td>
<td>Any</td>
<td>1.0</td>
</tr>
<tr>
<td>Condenser Water (Indoors):</td>
<td>Any</td>
<td>1.0</td>
</tr>
<tr>
<td>Make-up Cold Water:</td>
<td>Any</td>
<td>1.0</td>
</tr>
<tr>
<td>Bypass Feeder Piping:</td>
<td>Any</td>
<td>1.0</td>
</tr>
<tr>
<td>Heat Traced Lines (Above Grade):</td>
<td>Any</td>
<td>2.0</td>
</tr>
</tbody>
</table>

23 08 00 Commissioning of HVAC

1. The purpose of the commissioning process is to provide the Owner with a high level of assurance that the HVAC systems have been installed in the prescribed manner, and operate within the required performance guidelines. This process is not intended to take away or reduce the responsibility of the design team or installing contractors to provide a finished product. Commissioning is intended to enhance the quality of system start-up and aid in the orderly
transfer of systems for beneficial use by the Owner.

2. The HVAC components that shall be included in the commissioning process include, but shall not be limited to, the following:
 a) Air Handling Units.
 b) Chillers.
 c) Hydronic Pumps.
 d) Blower Coil Units.
 e) Fan Coil Units.
 f) Cabinet Heaters.
 g) Fans.
 h) Control Systems.
 i) HVAC System Integration.

3. The commissioning responsibilities of the Installing Contractor shall include the following:
 a) Review design for provision of power, controls, and alarm connections to the HVAC equipment.
 b) Prior to completion of installation, submit “System Verification Checklists” to Engineer of Record and Owner for review.
 c) Verify proper installation and performance of all HVAC system components provided.
 d) Complete System Verification Checklists and manufacturer’s pre-start checklists prior to scheduling acceptance and operating tests.
 e) Provide an HVAC and BAS system technician to assist during functional performance testing.
 f) Participate in the functional performance tests as required to achieve design intent.
 g) Participate in O&M Training as required by project specifications.
 h) Obtain O&M data on all equipment and assemble in binders as required by the project specifications.
 i) Conduct a maintenance demonstration with hands-on training. Submit record drawings as required by the project specifications prior to the training. Demonstrate proper use, operations and routine maintenance of the elevators and components.
 j) Submit completed System Verification Checklists documenting that the work has been completed in accordance with the plans and specifications and that they are functioning as designed.
 k) Provide written certification documenting that the work has been completed in accordance with the plans and specifications and that they are functioning as designed. Where the work has been sub-contracted, the sub-Trade Representative shall be responsible for the initial certification with the HVAC Trade Representative re-certifying that he has inspected the work and that it has been completed and functioning as designed. This certification must be submitted prior to the final verification.
 l) Provide set of record as-built drawings to the Engineer of Record for inclusion into record documents.
4. Coordination with Controls Contractor:
a) Close monitoring of the Control Contractor’s progress will promote efficient coordination of the TAB work. The CC will be expected to submit point-to-point checklists verifying that his work has been completed and all systems are ready for TAB work and Functional Performance Testing.

5. Start-Up:
a) The installing contractor shall perform start-up of the HVAC equipment. The appropriate contractors and/or manufacturer’s representative shall be on-site to perform start-up. No system will be started until the manufacturer’s checklists have been completed. Start-up will be performed according to the manufacturer’s recommended procedures. The Owner will visit the site to review completeness of installation in conjunction with progress meetings prior to starting equipment.
b) Contractors involved in installation, fabrication, manufacturer, control, or designs of equipment shall be present at the time of start-up. A factory-authorized technician shall be on site to start equipment when required by the specifications. This will minimize delays in bringing equipment on line and expedite acceptable functional performance.

6. Functional Performance Tests:
a) Each major system will be tested. A random sample of each subsystem will be tested. The Functional Performance Tests shall be performed in the presence of the Owner and shall serve as a compliment to the O&M Training. No tests will be performed until the system and related subsystems have been started, the testing and balancing report has been submitted and reviewed, and the completion of the control system has been documented through point-to-point checklists and other documentation.
b) The Functional Performance Tests shall include the following, with the Commissioning Agent (if applicable) and/or Owner present:
 (1) Air Handling Units shall be tested in designed operating modes.
 (2) Chiller shall be tested under relevant operating conditions.
 (3) Hydronic Pumps shall be tested under relevant operating conditions.
 (4) Blower Coil Units shall be tested under relevant operating conditions.
 (5) Fan Coil Units shall be tested under relevant operating conditions.
 (6) Cabinet Heaters shall be tested for conformance to project specifications.
 (7) Fans shall be tested for conformance to project specifications.
 (8) Control systems shall be tested for conformance to project specifications.
 (9) HVAC systems shall be tested to assure that the building as an integrated system operates properly, and to verify that interlocks and interactions between new and existing equipment and systems function according to design intent.
 (10) Off-season mode testing shall be implemented as necessary to assure conformance with the project specifications.
 (11) Installing contractors are expected to participate as required by the project specifications.
7. Owner Orientation and Training
 a) The installing contractor shall provide the Owner comprehensive training in the understanding of the systems and operation and maintenance of each major piece of equipment.
 b) The installing contractor or manufacturer’s representative will provide the training. This training should include hands-on operational training. The Owner may choose to videotape this training for future use.
 c) The training shall include start-up, operation in all modes possible, shut-down and any emergency procedures.
 d) The training shall include a review of all systems using simplified system schematics including riser diagrams, valve locations, and equipment locations.
 e) The installing contractor shall provide the Owner with copies of all inspections and acceptance.
 f) The manufacturer's representative shall provide the instructions on each major piece of equipment. These sessions shall use the printed installation, operation and maintenance instruction material included in the O&M manuals and shall include a review of the written O&M installations emphasize safe and proper operating requirements and preventative maintenance. Qualified service engineers employed by the manufacturers or their qualified sales representatives shall do equipment training. The operation and function of the equipment in the system shall be discussed. The start-up and shut-down modes of operation shall be demonstrated. Emergency operations shall be demonstrated.
 g) The Contractor shall attend all sessions and shall add to each session any special information relating to the details of installation of the equipment as it might impact the operation and maintenance.
 h) The installing contractor shall assist in the coordination of yearly testing, calibrating, and servicing as specified in the contract documents.
 i) The Control Trade Representative shall attend all sessions and be prepared to conduct the controls portion of the training as it relates to each equipment section.
 j) The Control Trade Representative shall conduct the training session on the controls system hardware and software.
 k) The piping, insulation and sheet metal Trade Representatives shall conduct sessions on their respective trades with emphasis on any peculiarities of the systems, pressure limitations and maintenance requirements.
 l) The TAB Trade Representative shall conduct a training session reviewing the procedures and methods used in the TAB process, shall review the TAB data and shall demonstrate use of test equipment which may have been turned over to the Owner and shall point out the locations of all pitot traverse locations for the Owner's future use.

23 11 23 Facility Natural Gas Piping

1. All gas systems must comply with 2009 International Fuel Gas Code which incorporates, by reference, NFPA, ANSI, and ASME standards. In addition, all installations shall comply with the Philadelphia Gas Works Field Services Department Piping Specifications and Equipment Installations (January 2010).
2. Natural gas piping shall be schedule 40 steel conforming to ASTM A-53, Grade B, Type ERW or seamless with screwed or welded black malleable iron fittings.

3. Each branch take-off shall be provided with an approved WOG ball valve or lubricated plug valve having a semi-steel body, single gland, wrench type operation, 175 PSI.

4. Natural gas booster pump:
 a) Basis of Design manufacturer is to be Eclipse, Inc.
 b) At a minimum, the booster is to be hermetic type, UL listed, have NEMA Class 1, Group D explosion proof motor with thermal overload protection, have a steel casing and control panel with NEMA 4 construction.

5. Provide an emergency shut-off button both inside and outside the room/laboratory using natural gas. Shut-off buttons for the room are to be interconnected to a solenoid valve located in the piping outside the room. Shut-off buttons are to be equipped with push button covers.

23 21 13 Hydronic Piping

1. Hydronic piping pertains to all chilled water, glycol hot water heating and ice storage chilled water piping systems installed throughout the University.

2. Underground piping systems shall be designed and installed in accordance with the requirements and limitations of ANSI/ASME B31.1 “Power Piping”.

3. Piping within buildings shall be designed and installed in accordance with the requirements and limitations of ANSI/ASME B31.9 “Building Services Piping”.

4. All HVAC equipment (heat exchangers, air coils, etc.) isolation valves are to be upstream of valve assembly sets on supply and downstream of valve assembly sets on return. Valve assembly sets consists of unions, strainers, thermostat, P/T wells, etc.

5. All control valves, butterfly valves, etc. are to be mounted such that actuators and handles are located on the bottom half (3 o’clock to 9 o’clock) on the piping. Actuators and handles located on the top half (9 o’clock to 3 o’clock) of the pipe are prohibited.

6. Aboveground Hydronic Piping:
 a) Chilled Water and Heating Hot Water (40°F through 210°F) Service:
 (1) Up to and including 4 inch NPS: Hard-Drawn Seamless Copper Water Tubing ASTM B88 - Type L.
 (2) 6 inch NPS and larger: Carbon Steel Pipe, ASTM A53 Grade B-Type ERW or S, Schedule 40.
 b) Ice Storage Chilled Water (Less than 40°F) Service:
 (1) Up to and including 4 inch NPS: Hard-Drawn Seamless Copper Water Tubing ASTM B88 - Type L.
 (2) 6 inch NPS and larger: Stainless Steel Pipe, ASTM A312, Type 316L, Schedule 40.
c) Tubing for Instrumentation (All Services):
 (1) Seamless Stainless Steel, ASTM A269 Type 316, 1/2 inch OD x 0.049 inch Wall Thickness.

7. Pipe Fittings – Hydronic Systems:
 a) Chilled Water and Heating Hot Water (40°F through 210°F) Service:
 (1) Up to and including 4-inch NPS:
 (a) Wrot Copper Solder Joint Fittings, ASME B16.22, ASTM B75, Nibco.
 (b) Wrot Copper Press-End Fittings, ASME B16.22, ASTM B75, EPDM, Viega Smart-Connect.
 \textit{NOTE: Cast press-end fittings are not permitted. Press-end valves or other specialties are not permitted.}
 (2) 6-inch NPS and larger:
 (a) Carbon Steel Butt Welding Fittings, ASME B16.9, ASTM A234 WPB, Schedule STD.
 (b) Ductile Iron Grooved-End (Victaulic) Fittings, ASTM A536.
 \textit{NOTE: Grooved-end valves or other specialties are not permitted. Grooved-end fittings are not permitted for glycol service, regardless of sealing materials used.}
 b) Ice Storage Chilled Water (Less than 40°F) Service:
 (1) Up to and including 4-inch NPS:
 (a) Wrot Copper Solder Joint Fittings, ASME B16.22, ASTM B75, Nibco.
 (b) Wrot Copper Press-End Fittings, ASME B16.22, ASTM B75, EPDM, Viega Smart-Connect.
 \textit{NOTE: Cast press-end fittings are not permitted. Press-end valves or other specialties are not permitted.}
 (2) 6-inch NPS and larger:
 (a) Stainless Steel Butt Welding Fittings, ASME B16.9, ASTM A312, 316SS, Schedule 40S.
 c) Tubing for Instrumentation (All Services):
 (1) Seamless Stainless Steel, ASTM A269 Type 316, 1/2 inch OD x 0.049 inch Wall Thickness.
 (2) Stainless Steel Gaugeable Tube Fittings, ASTM A276 or ASTM A182, 316SS, Swagelok or Parker A-Lok.

8. Valves – Hydronic Systems:
 a) Chilled Water and Heating Hot Water (40°F through 210°F) Service:
 (1) Up to and including 2-inch NPS:
 (a) Shutoff Service Only:
 (i) Solder-End Ball Valve.
 (ii) Rating: 600 PSI CWP, 150 PSI Steam.
 (iii) Body: Two-Piece, Bronze.
 (iv) Ball & Stem: 316 Stainless Steel.
 (v) Seat & Packing: MPTFE.
 (vii) Brand: Apollo Valves.
 (viii) Model: 77C-24 (Size Designation) - 27 Series.
(b) Shutoff Service and Gauge & Instrument Isolation:
(i) Threaded Ball Valve.
(ii) Rating: 600 PSI CWP, 150 PSI Steam.
(iii) Body: Two-Piece, Bronze.
(iv) Ball & Stem: 316 Stainless Steel.
(v) Seat & Packing: MPTFE.
(vii) Brand: Apollo Valves.
(viii) Model: 77C-14 (Size Designation) - 27 Series.

(c) Low Point Drain & High Point Manual Vent:
(i) Threaded Ball Valve with Hose Cap & Chain.
(ii) Rating: 600 PSI CWP.
(iii) Body: Two-Piece, Bronze.
(iv) Ball & Stem: 316 Stainless Steel.
(v) Seat & Packing: RPTFE.
(vii) Brand: Apollo Valves.
(viii) Model: 7010 (Size Designation) HC-27 Series.

(d) Modulating (Bypass) Service:
(i) Threaded Globe Valve.
(ii) Rating: ANSI Class 150.
(iii) Body & Bonnet: Bronze ASTM B-62 or Bronze ASTM B-16.
(iv) Disc Holder: Bronze ASTM B-62 or Bronze ASTM B-16.
(v) Disc: PTFE (15% Glass Filled).
(vi) Packing: PTFE.
(vii) Brand: Crane Energy Flow Solutions.
(viii) Model: Figure 7TF.

(e) Check Valve:
(i) Threaded Swing Check Valve, Threaded Cap.
(ii) Rating: ANSI Class 150.
(iv) Disc Holder: Bronze ASTM B-62 or Bronze ASTM B-16.
(v) Disc: PTFE (15% Glass Filled).
(vi) Brand: Crane Energy Flow Solutions.
(vii) Model: Figure 141TF.

(f) Automatic Balancing Valve:
(i) Threaded End Manual Balancing Valve.
(ii) Rating: 300 PSI.
(iii) Body, Trim, & Seat: Ametal.
(iv) Seat & Stem Seals: EPDM.
(v) Brand: Victaulic Tour & Anderson.
(vi) Model: 787.
(2) 2-1/2-inch NPS and larger:

(a) Shutoff Service:
 (i) High Performance Butterfly Valve.
 (ii) Rating: ANSI Class 150.
 (iii) Body: ASTM A216 Carbon Steel, Lug Style.
 (iv) Stem: ASTM A564 Type 630 Stainless Steel.
 (v) Disc: ASTM A351 CF8M Stainless Steel.
 (vi) Seat: Virgin TFE.
 (vii) Brand: Cameron WKM MB-1 Dynacentric.
 (viii) Model: (Size Designation)-B5-113-02-S01-11-WG.

(b) Modulating (Bypass) Service:
 (i) Flanged Globe Valve, OS&Y.
 (ii) Rating: ANSI Class 150.
 (iii) Body & Bonnet: Stainless Steel ASTM A351 – CF8M.
 (iv) Disc: Stainless Steel ASTM A351 – CF8M.
 (v) Packing: PTFE.
 (vi) Brand: Crane Energy Flow Solutions – Aloyco.
 (vii) Model: Figure 2317.

(c) Check Valve:
 (i) High Performance Check Valve.
 (ii) Rating: ANSI Class 150.
 (iii) Body: Wafer Style, ASTM A216 Carbon Steel.
 (iv) Seal: EPDM.
 (v) Disc, Arm & Pin: 316 Stainless Steel.
 (vi) Brand: Crane Energy Flow Solutions – Uni Check.
 (vii) Model: (Size Designation)-15-A-0-3-4-1-3-0.

(d) Manual Balancing Valve:
 (i) Manual Balancing Valve.
 (ii) Rating: 300 PSI, ANSI Class 150 Flanged End.
 (iii) Body & Seat: ASTM A536 Grade 40-60-18 Ductile Iron.
 (iv) Seat & Stem Seals: EPDM.
 (v) Brand: Victaulic Tour & Anderson.
 (vi) Model: 788 Grooved End, 789 Flanged End.

 NOTE: Grooved-end fittings are not permitted for glycol service, regardless of sealing materials used.
b) Ice Storage Chilled Water (Less than 40°F) Service:
 (1) Up to and including 2-inch NPS:
 (a) Shutoff Service Only:
 (i) Solder-End Ball Valve.
 (ii) Rating: 600 PSI CWP, 150 PSI Steam.
 (iii) Body: Two-Piece, Bronze.
 (iv) Ball & Stem: 316 Stainless Steel.
 (v) Seat & Packing: MPTFE.
 (vii) Brand: Apollo Valves.
 (viii) Model: 77C-24 (Size Designation) - 27 Series.
 (b) Shutoff Service and Gauge & Instrument Isolation:
 (i) Threaded Ball Valve.
 (ii) Rating: 600 PSI CWP, 150 PSI Steam.
 (iii) Body: Two-Piece, Bronze.
 (iv) Ball & Stem: 316 Stainless Steel.
 (v) Seat & Packing: MPTFE.
 (vii) Brand: Apollo Valves.
 (viii) Model: 77C-14 (Size Designation) - 27 Series.
 (c) Low Point Drain & High Point Manual Vent:
 (i) Threaded Ball Valve with Hose Cap & Chain.
 (ii) Rating: 600 PSI CWP.
 (iii) Body: Two-Piece, Bronze.
 (iv) Ball & Stem: 316 Stainless Steel.
 (v) Seat & Packing: RPTFE.
 (vii) Brand: Apollo Valves.
 (viii) Model: 7010 (Size Designation) HC-27 Series.
 (d) Modulating (Bypass) Service:
 (i) Threaded Globe Valve
 (ii) Rating: ANSI Class 150
 (iii) Body & Bonnet: Bronze ASTM B-62 or Bronze ASTM B-16.
 (iv) Disc Holder: Bronze ASTM B-62 or Bronze ASTM B-16.
 (v) Disc: PTFE (15% Glass Filled).
 (vi) Packing: PTFE.
 (vii) Brand: Crane Energy Flow Solutions.
 (viii) Model: Figure 7TF.
 (e) Check Valve:
 (i) Threaded Swing Check Valve, Threaded Cap.
 (ii) Rating: ANSI Class 150.
 (iv) Disc Holder: Bronze ASTM B-62 or Bronze ASTM B-16.
 (v) Disc: PTFE (15% Glass Filled).
 (vi) Brand: Crane Energy Flow Solutions.
 (vii) Model: Figure 141TF.
(f) **Automatic** Balancing Valve:

(i) Threaded End Manual Balancing Valve.
(ii) Rating: 300 PSI.
(iii) Body, Trim, & Seat: Ametal.
(iv) Seat & Stem Seals: EPDM.
(v) Brand: Victaulic Tour & Anderson.
(vi) Model: 787.

(2) 2-1/2-inch NPS and larger:

(a) Shutoff Service:

(i) High Performance Butterfly Valve.
(ii) Rating: ANSI Class 150.
(iii) Body: ASTM A351 CF8M Stainless Steel, Lug Style.
(iv) Stem: ASTM A564 Type 630 Stainless Steel.
(v) Disc: ASTM A351 CF8M Stainless Steel.
(vi) Seat: TFE.
(vii) Packing: TFE Vee.
(viii) Brand: Cameron WKM MB-1 Dynacentric.
(ix) Model: (Size Designation)-B5-123-02-S02-11-WG.

(b) Modulating (Bypass) Service:

(i) Flanged Globe Valve, OS&Y.
(ii) Rating: ANSI Class 150.
(iii) Body & Bonnet: Stainless Steel ASTM A351 - CF8M.
(iv) Disc: Stainless Steel ASTM A351- CF8M.
(v) Packing: PTFE.
(vi) Brand: Crane Energy Flow Solutions – Aloyco.
(vii) Model: Figure 317.

(c) Check Valve:

(i) High Performance Check Valve.
(ii) Rating: ANSI Class 150.
(iii) Body: Wafer Style, ASTM A351- CF8M Stainless Steel.
(iv) Seal: EPDM.
(v) Disc, Arm & Pin: 316 Stainless Steel.
(vi) Brand: Crane Energy Flow Solutions – Uni Check.
(vii) Model: (Size Designation)-15-A-2-3-4-1-3-0.

(d) Manual Balancing Valve:

(i) Rating: 300 PSI, ANSI Class 150 Flanged End.
(iii) Seat & Stem Seals: EPDM.
(iv) Brand: Victaulic Tour & Anderson.
(v) Model: 789 Flanged End Only.

9. Flanges and Accessories – Hydronic Systems:

a) Chilled Water and Heating Hot Water (40°F through 210°F) Service:

(1) Flanges: Forged Pipe Flange, ASME B16.5, ASTM A105 Carbon Steel, Class 150, 1/16 inch Raised Face.

NOTE: Use flat face flanges for connection to equipment equipped with flat face
flanges.

(2) Bolting: ASTM A307 Grade B Heavy Hex Bolts and Stud Bolts, ASTM A563 Grade A Heavy Hex Nuts. Length of bolts and studs per ASME B16.5, Table 8.

(3) Gaskets: Spiral Wound Metal Gasket with Outer Gauge Ring, ASME B16.20, Flexible Graphite Filler Material, 304 SS Gauge Ring, Class 150, Garlock Style RW.

b) Ice Storage Chilled Water (Less than 40ºF) Service:

NOTE: Use flat face flanges for connection to equipment equipped with flat face flanges.

(2) Bolting: ASTM A193 Grade B8M, 316 Stainless Steel Hex Bolts and Stud Bolts, ASTM A194 Grade 8M, 316 Stainless Steel Hex Nuts. Length of bolts and studs per ASME B16.5, Table 8.

(3) Gaskets: Spiral Wound Metal Gasket with Outer Gauge Ring, ASME B16.20, Flexible Graphite Filler Material, 304 SS Gauge Ring, Class 150, Garlock Style RW.

10. Hydronic piping systems requiring glycol are to use a propylene glycol solution mixture designed for an outdoor temperature of 0 degrees F.

23 21 16 Hydronic Piping Specialties

1. Strainers - Cast iron "Y" type with removable, cleanable stainless steel screens having 1/32" perforations through 2" and 1/16" perforations above 2". Each strainer blow-down connection shall be piped with a ball valve and hose connection. Strainers sizes 8" and above shall be installed at a maximum height of 5'-0" above the floor.

2. Check valves shall be of the silent, center guided spring loaded type with screwed ends up to and including 2" and wafer type above 2". All trim shall be 316 stainless steel with a carbon steel body. Triple-duty valves shall not be used. Swing check valves are prohibited.

3. Pressure relief valves shall be constructed of the following materials:
 a) Bronze body.
 b) Trim - stainless steel.
 c) Springs - stainless steel.

4. All relief valves shall conform to ASME standards and be National Board certified.

5. Expansion Tanks - Diaphragm type steel tanks complete with charging valves, drain valve and system connection. A/E to specify the expansion tank precharge and operating pressure when filled.

6. Air and dirt separators are to be Spirotherm (no substitutions).
 a) New and renovation (where space permits) work: Combination air and dirt separator.
 (1) Standard velocity systems use model Spirovent Dirt.
 (2) High velocity systems use model Spirovent Dirt HV.
b) Renovation work: Separate air and dirt separators.
 (1) Standard velocity systems – Air separator use model Spirovent Air.
 (2) Standard velocity systems – Dirt separator use model Spirotrap.
 (3) High velocity systems – Air separator use model Spirovent HV
 (4) High velocity systems – Dirt separator use model Spirotrap HV.

c) Air separator to be equipped with automatic air vent, model Spirotop.

d) Dirt separator to be equipped with drain valve assembly (ball valve and hose adapter).

e) Provide flanged or threaded connections in accordance with inlet and outlet piping.

7. Unions and flanges:
 a) Install accessible unions or flanges in all supply and return connections to equipment and specialties as required to facilitate the removal and or servicing of equipment such as:
 (1) Heat exchangers.
 (2) Pumps.
 (3) Chillers.
 (4) Steam traps.
 (5) Unit heaters.
 (6) Control valves.
 (7) Expansion joints.
 (8) Pressure reducing valves.
 b) On all equipment provided with flanged connections. All flanges shall be faced, drilled and spot faced to ASME Standards. Unions and flanges in steel pipe shall be:
 (1) Unions shall be ground joint, malleable iron, screw type, conforming to ASTM A-197 and ANSI 16.3.
 (2) Flanges shall be forged steel conforming to ASTM A-181 and ANSI B16.5.
 (3) Unions and flanges shall be 150 lb. or 300 lb. rated to meet system design requirements.
 (4) Unions and flanges in copper piping shall be wrought copper, ground joint, solder ends, conforming to ANSI B16.22.
 (5) Flanges 4" and above shall be secured using B-7 bolts. Flange gasket material shall be Klinger #C-4501.

8. Separable Sockets - Stainless steel with extension necks to suit insulation thickness. Sockets shall be of the proper length to assure accurate readings.

9. Air Vents - High capacity, float activated, non-modulating 150 PSIG, cast iron body, stainless steel trim designed to prevent air from entering the system when pressure falls below atmospheric pressure on manual type consists of a capped ball or valve.

10. Balancing Provisions - All systems shall be designed using the following general balancing provisions:
 a) Refer to Part 8 in Section 23 21 13 for approved balancing valve manufacturer and model.
 b) The designer shall indicate on the drawings the locations and size of all balancing provisions, which shall be provided as follows:
 (1) In each heating and/or cooling circuit.
 (2) On all cooling and heating coils.
(3) On all supply main piping adjacent to pumps.
(4) Entrance to chillers and heat exchangers.

c) All measuring devices shall be installed per manufacturer's recommendations.

11. All non-potable water systems (i.e. HVAC Systems and irrigations systems must be provided with an approved individual backflow preventer and in a location in accordance with the Philadelphia Water Department Cross Connection Control Program.
 a) The basis of design shall be Watts, Series LF909 reduced pressure zone assemblies with drain assembly and air gap model 909AG-F (no substitutions for either component).
 b) The basis of design configuration shall include one full-size reduced pressure zone assembly installed in parallel to permit continuous, uninterrupted water service during testing and maintenance.
 c) Each assembly shall be provided with FM-approved epoxy-coated flanged OS&Y gate valves.
 d) A sanitary drain shall be provided directly below the assemblies for relief valve discharge.

12. On the larger carbon steel (3 in.) to copper connections use grooved end dielectric waterways. In the smaller applications use threaded by grooved end dielectric waterways.

13. Hose kits not furnished by unit manufacturer are to be manufactured by Flow Design Inc. or Hays Fluid Controls.

23 21 23 Hydronic Pumps

1. All pumps shall be base mounted, bronze fitted, flexible coupled and rated for 175 PSI. Pumps shall be constructed with the following components:
 a) Bronze shaft sleeve.
 b) Alloy steel shaft.
 c) Cast iron casting and companion flanges. Some pumps may require ductile iron companion flanges. Pump flanges, mating flanges, flange gasketing and bolting shall meet the requirements of ANSI/ASME B31.1, Table 112. Spiral-wound metallic gasket with flexible graphite filler and outside gauge (centering) ring, are preferred.
 d) Re-greaseable lubricated ball-bearings rate for an average life of 250,000 hours.
 e) Extended grease fittings and bottom relief plugs. Grease fittings shall extend to the exterior of the insulation boxes on chilled water pumps.

2. Motors supplied with pumps shall be of the NEMA premium efficiency type, manufactured in the USA and selected so that the motor cannot become overloaded at any point on the pump curve.

3. Provide all pumps with self-aligning, positive drive, end face shaft mechanical seals.

4. Use horizontal pumps in all locations. Vertical pumps are prohibited.

5. Split-case double inlet pumps are preferred to end suction in all primary pumping applications and must be used on all systems having a flow rate in excess of 500 GPM.
6. Circulating pumps up to 3 horsepower shall be equipped with bypass and isolation valves.

7. Where used, end suction pumps shall include suction diffusers, equipped with stainless steel cylinder and baffle, or a minimum of 5 pipe diameters of straight pipe at the inlet to the pump.

8. The installing contractor shall coordinate with the pump manufacturer or an authorized representative to provide start-up services which shall include, but not be limited to, the following:
 a) Checking of alignment, absence of pipe strain, lubrication, rotation and vibration (axially, horizontally and vertically).
 b) Take suction and discharge pressure gauge readings and compare such with the pump nameplate data.
 c) Submit five (5) copies of a full report to the University’s Project Manager.

9. Refer to Section 23 07 16 "HVAC Equipment Insulation" for chilled water pump insulation requirements.

10. All pumps shall be mounted on 4-inch housekeeping pads with vibration isolation as recommended in the current edition of the ASHRAE HVAC Applications Handbook.

11. The centrifugal pumps shall comply with ANSI/ASME B73.1 and shall be equipped with oil-lubricated bearings. When floor mounted, they shall have a horizontal axis. Acceptable manufacturers are Flowserve, Goulds, or Griswold.

12. Approved pump manufacturers: Large – Bell & Gossett and Goulds. Recirculating or Fractional – Armstrong and Taco.

23 22 13 Steam and Condensate Heating Piping

1. Drexel University considers a steam service “High Pressure” when the steam operating pressures are greater than 15 PSIG, and “Low Pressure” when the steam operating pressures up to and including 15 PSIG.

2. Aboveground Steam and Steam Condensate Piping:
 a) Steam Low Pressure: Carbon steel, ASTM A53 Grade B-Type ERW or S, Schedule 40.
 b) Steam High Pressure:
 (1) Piping up to and including 2 inch NPS: Carbon steel, ASTM A53 Grade B-Type S, Schedule 80.
 (2) Piping 2-1/2 inch NPS and larger: Carbon steel, ASTM A53 Grade B-Type ERW, Schedule 40.
 c) Steam Condensate: Carbon steel, ASTM A53 Grade B-Type S, Schedule 80.

3. Underground Piping - Drainable, dryable, testable system consisting of 10 gauge spiral weld steel conduit with epoxy coating. Conduit shall be sized to house a minimum foam glass insulation thickness of 2 inches. The design shall specify and indicate all thrust blocks, anchors,
moment guides, oversized elbows and expansion loops necessary for a complete system. Include all end seals, gland seals and pipe supports. A Holiday detector shall be used during the installation to determine if any faults exist in the conduit coating. Provide cathodic protection for all underground systems.

a) Underground steam piping systems shall be A53B-Type S, seamless carbon steel, Schedule 40 pipe.

b) Underground condensate piping systems shall be A53B-Type S, seamless carbon steel, Schedule 80 pipe or Schedule 10 stainless steel pipe. Condensate generates or contains carbolic acid that attacks carbon steel. Therefore, using Schedule 80 pipe will provide a 30 to 40 year expected life. Where insulation is not required on condensate piping (because the heat will not be recovered), installing Schedule 10 stainless steel pipe may be more economical than using Schedule 80 seamless carbon steel pipe.

4. Pipe Fittings – Steam and Steam Condensate:
 a) Pipe fittings include elbows, tees, couplings, unions, pipe plugs, pipe caps, crosses, reducing couplings, and reducing bushings.
 b) Steam Low Pressure:
 (1) Up to and including 2-inch NPS:
 (a) Malleable Iron, ASME B16.3, ASTM A197, Class 300 (XS/XH).
 (2) 2-1/2-inch NPS and larger:
 (a) Carbon Steel Butt Welding Fittings, ASME B16.9, ASTM A234 WPB, Schedule STD.
 c) Steam High Pressure:
 (1) Up to and including 2-inch NPS:
 (a) Forged Carbon Steel, ASME B16.11, ASTM A105, Class 2000 or 3000.
 (2) 2-1/2-inch NPS and larger:
 (a) Carbon Steel Butt Welding Fittings, ASME B16.9, ASTM A234 WPB, Schedule XS.
 d) Steam Condensate:
 (1) Up to and including 2-inch NPS:
 (a) Forged Carbon Steel, ASME B16.11, ASTM A105, Class 2000 or 3000.
 (2) 2-1/2-inch NPS and larger:
 (a) Carbon Steel Butt Welding Fittings, ASME B16.9, ASTM A234 WPB, Schedule XS.

5. Valves – Steam and Steam Condensate:
 a) The system shall be designed for the provision of isolating valves at all equipment, hydronic circuits, control valves, individual pieces of equipment and all branch mains. Valves associated with pressure vessels shall be installed in compliance Chapter 3a of The Pennsylvania Code, “Boiler and Unfired Pressure Vessel Regulations”.
b) Steam Low Pressure:
(1) Up to and including 2-inch NPS:
 (a) Shutoff Service and Gauge & Instrument Isolation:
 (i) Threaded Ball Valve.
 (ii) Rating: 1500 PSI WOG or 2000 PSI WOG, 150 PSI Steam.
 (iii) Body: Two-Piece, ASTM A105 Carbon Steel.
 (iv) Ball & Stem: 316 Stainless Steel.
 (v) Seat & Packing: RPTFE.
 (vii) Brand: Apollo Valves.
 (viii) Model: 73A-14(Size Designation) - 27 Series.
 (b) Modulating (Bypass) Service:
 (i) Threaded Globe Valve, OS&Y.
 (ii) Rating: ANSI Class 800.
 (iii) Body & Bonnet: Forged ASTM A105N Carbon Steel.
 (iv) Disc: AISI-410.
 (v) Seat: Stellite.
 (vi) Packing: Graphite.
 (vii) Brand: RP&C Valve, Bonney Forge.
 (viii) Model: F80D.
(2) 2-1/2-inch NPS and larger:
 (a) Shutoff Service:
 (i) Flanged Gate Valve, OS&Y.
 (ii) Rating: ANSI Class 150.
 (iii) Body & Bonnet: Cast WCB Carbon Steel.
 (iv) Disc: Flexible Wedge, CA-15 or 13% CR Overlay.
 (v) Seat Rings: Hardfaced.
 (vi) Packing: Graphite.
 (vii) Brand: Crane Energy Flow Solutions.
 (viii) Model: Figure 47.
 (b) Modulating (Bypass) Service:
 (i) Flanged Globe Valve, OS&Y.
 (ii) Rating: ANSI Class 150.
 (iii) Body & Bonnet: Cast WCB Carbon Steel.
 (iv) Disc: 13% CR Overlay.
 (v) Seat Rings: Hardfaced.
 (vi) Packing: Graphite.
 (vii) Brand: Crane Energy Flow Solutions.
 (viii) Model: Figure 143.
c) Steam High Pressure:
 (1) Up to and including 2-inch NPS:
 (a) Shutoff Service Only:
 (i) Threaded Gate Valve, OS&Y.
 (ii) Rating: ANSI Class 800.
 (iii) Body & Bonnet: Forged ASTM A105N Carbon Steel.
 (iv) Wedge: AISI-410.
 (v) Seat: AISI-410 + Stellite.
 (vi) Packing: Graphite.
 (vii) Brand: RP&C Valve, Bonney Forge.
 (viii) Model: EF56D.
 (b) Shutoff Service and Gauge & Instrument Isolation:
 (i) Threaded Ball Valve.
 (ii) Rating: 2000 PSI CWP.
 (iii) Body: Two-Piece, ASTM A216 Type WCB Carbon Steel.
 (iv) Ball & Stem: 316 Stainless Steel.
 (v) Seat & Packing: Xtreme.
 (vii) Brand: Metso Automation – Jamesbury.
 (viii) Model: (Size Designation)-A-Z(-)-22-36-XT.
 NOTE: Fire-Tite & Xtreme Seat Required.
 (c) Modulating (Bypass) Service:
 (i) Threaded Globe Valve, OS&Y.
 (ii) Rating: ANSI Class 800.
 (iii) Body & Bonnet: Forged ASTM A105N Carbon Steel.
 (iv) Disc: AISI-410.
 (v) Seat: Stellite.
 (vi) Packing: Graphite.
 (vii) Brand: RP&C Valve, Bonney Forge.
 (viii) Model: F80D.
 (2) 2-1/2-inch NPS and larger:
 (a) Shutoff Service:
 (i) Flanged Gate Valve, OS.
 (ii) Flanged Gate Valve, OS&Y.
 (iii) Rating: ANSI Class 300.
 (iv) Body & Bonnet: Cast WCB Carbon Steel.
 (v) Disc: Flexible Wedge, CA-15 or 13% CR Overlay.
 (vi) Seat Rings: Hardfaced.
 (vii) Packing: Graphite.
 (viii) Brand: Crane Energy Flow Solutions.
 (ix) Model: Figure 33.
(b) Modulating (Bypass) Service:
 (i) Flanged Globe Valve, OS&Y.
 (ii) Rating: ANSI Class 300.
 (iii) Body & Bonnet: Cast WCB Carbon Steel.
 (iv) Disc: 13% CR Overlay.
 (v) Seat Rings: Hardfaced.
 (vi) Packing: Graphite.
 (vii) Brand: Crane Energy Flow Solutions.
 (viii) Model: Figure 151.

d) Steam Condensate:
 (1) Up to and including 2-inch NPS:
 (a) Shutoff Service Only:
 (i) Threaded Gate Valve, OS&Y.
 (ii) Rating: ANSI Class 800.
 (iii) Body & Bonnet: Forged ASTM A105N Carbon Steel.
 (iv) Wedge: AISI-410.
 (v) Seat: AISI-410 + Stellite.
 (vi) Packing: Graphite.
 (vii) Brand: RP&C Valve, Bonney Forge.
 (viii) Model: EF56D.

(b) Shutoff Service and Gauge & Instrument Isolation:
 (i) Threaded Ball Valve.
 (ii) Rating: 2000 PSI CWP.
 (iii) Body: Two-Piece, Stainless Steel ASTM A351-CF3M/CF8M.
 (iv) Ball & Stem: 316 Stainless Steel.
 (v) Seat & Packing: Xtreme.
 (vi) Lever & Nut: Stainless Steel.
 (vii) Brand: Metso Automation – Jamesbury.
 (viii) Model: (Size Designation)-A-Z-()-36-36-XT.
 NOTE: Fire-Tite & Xtreme Seat Required.

(c) Modulating (Bypass) Service:
 (i) Threaded Globe Valve, OS&Y.
 (ii) Rating: ANSI Class 800.
 (iii) Body & Bonnet: Forged ASTM A105N Carbon Steel.
 (iv) Disc: AISI-410.
 (v) Seat: Stellite.
 (vi) Packing: Graphite.
 (vii) Brand: RP&C Valve, Bonney Forge.
 (viii) Model: F80D.
(d) Check Valve:
 (i) Threaded Check Valve, Bolted-Cover.
 (ii) Rating: ANSI Class 800.
 (iii) Body & Cover: Forged ASTM A105N Carbon Steel.
 (iv) Disc: AISI-410.
 (v) Gasket: F316 + Graphite.
 (vi) Brand: RP&C Valve, Bonney Forge.
 (vii) Model: F98D.

(2) 2-1/2-inch NPS and larger:
 (a) Shutoff Service:
 (i) High Performance Butterfly Valve.
 (ii) Rating: ANSI Class 300.
 (iii) Body: ASTM A216 Carbon Steel, Lug Style.
 (iv) Stem: ASTM A564 Type 630 Stainless Steel.
 (v) Disc: ASTM A351 CF8M Stainless Steel.
 (vi) Seat: TFM.
 (vii) Packing: Grafoil.
 (viii) Brand: Cameron WKM MB-1 Dynacentric.
 (ix) Model: (Size Designation) – B5-313-02-S02-14-WG.

 (b) Modulating (Bypass) Service:
 (i) Flanged Globe Valve, OS&Y.
 (ii) Rating: ANSI Class 300.
 (iii) Body & Bonnet: Cast WCB Carbon Steel.
 (iv) Disc: 13% CR Overlay.
 (v) Seat Rings: Hardfaced.
 (vi) Packing: Graphite.
 (vii) Brand: Crane Energy Flow Solutions.
 (viii) Model: Figure 151.

 (c) Check Valve:
 (i) High Performance Check Valve.
 (ii) Rating: ANSI Class 300.
 (iii) Body: Wafer Style, ASTM A216 Carbon Steel.
 (iv) Seal: EPDM.
 (v) Disc, Arm & Pin: 316 Stainless Steel.
 (vi) Brand: Crane Energy Flow Solutions – Uni Check.
 (vii) Model: (Size Designation) – 30-A-0-3-4-1-3-0.

6. Flanges and Accessories – Steam and Steam Condensate:
 a) Steam Low Pressure:
 (1) Flanges: Forged Pipe Flange, ASME B16.5, ASTM A105 Carbon Steel, Class 150, 1/16 inch Raised Face.
 (2) Bolting: ASTM A193 Grade B7 Heavy Hex Bolts and Stud Bolts, ASTM A194 Grade 2H Heavy Hex Nuts. Length of bolts and studs per ASME B16.5, Table 8.
 (3) Gaskets: Spiral Wound Metal Gasket with Outer Gauge Ring, ASME B16.20, Flexible Graphite Filler Material, 304 SS Gauge Ring, Class 150, Garlock Style RW.
b) Steam High Pressure:
 (1) Flanges: Forged Pipe Flange, ASME B16.5, ASTM A105 Carbon Steel, Class 150, 1/16 inch Raised Face.
 (2) Bolting: ASTM A193-B7 Heavy Hex Bolts and Stud Bolts, ASTM A194-2H Heavy Hex Nuts. Length of bolts and studs per ASME B16.5, Table 11.
 (3) Gaskets: Spiral Wound Metal Gasket with Outer Gauge Ring, ASME B16.20, Flexible Graphite Filler Material, 304 SS Gauge Ring, Class 300, Garlock Style RW.

c) Steam Condensate:
 (1) Flanges: Forged Pipe Flange, ASME B16.5, ASTM A105 Carbon Steel, Class 300, 1/16 inch Raised Face.
 NOTE: Use flat face flanges for connection to equipment equipped with flat face flanges.
 (2) Bolting: ASTM A193 Grade B7 Heavy Hex Bolts and Stud Bolts, ASTM A194 Grade 2H Heavy Hex Nuts. Length of bolts and studs per ASME B16.5, Table 11.
 (3) Gaskets: Spiral Wound Metal Gasket with Outer Gauge Ring, ASME B16.20, Flexible Graphite Filler Material, 304 SS Gauge Ring, Class 300, Garlock Style RW.

23 22 16 Steam and Condensate Heating Piping Specialties

1. Unless otherwise specified by code, safety valves shall be constructed of the following materials:
 a) Carbon steel body.
 b) Trim - stainless steel.
 c) Springs - stainless steel.

2. The discharge piping from all safety valves shall be piped to a drip pan elbow and then to a safe discharge point on the exterior of the building. The drain connections from each drip pan elbow shall be piped to a floor drain.

3. Steam Traps:
 a) All low pressure (15 PSI and below) shall be venturi-type by Steamgard, or if not available float and thermostatic traps having bodies and caps of ASTM-A278 Class 30 cast iron or SG ductile. All internals including float, main valve head/seat, thermostatic air vent, and air vent head/seat shall be stainless steel.
 (1) Up to and including 2-inch NPS: Steamgard model EP HA.
 (2) 2-1/2 – inch NPS and larger: Steamgard model UD.
 (3) Float and Thermostatic Traps: SpiraxSarco Model (FTI, FT or FTB) or as approved equal.
 b) All high pressure (above 15 PSI) steam traps shall be venturi-type by Steamgard or if not available of the thermodynamic type. Both disc and seat shall be of hardened stainless steel.
 (1) Up to and including 2-inch NPS: Steamgard model EP HL.
 (2) 2-1/2 – inch NPS and larger: Steamgard model UD.
 (3) Thermodynamic: Spirax Sarco Model UTD30 with blow-down includes universal connector and module to 450 PSIG; TD42L with blow-down (integral strainer) and TD52L are non-module types, or as approved equal.
(4) Utilize inverted bucket or orifice traps for large, constant condensate loads, such as main steam distribution piping.
(5) Utilize thermodynamic traps for small, constant condensate loads.
(6) Utilize float and thermostatic traps for modulating condensate loads, such as heating converters.

c) Where Steamgard traps are utilized, the installing contractor shall contact Steamgard for proper sizing and selection of trapping equipment for the application.
d) Do not install traps in areas which may be subjected to freezing temperatures under normal conditions.
e) Small terminal devices, such as fan coils, unit ventilators, and convector units are to use Hoffman 17C thermostatic traps, in lieu of SpiraxSarco.

4. Pressure Reducing Stations:
 a) The installation of pressure reducing stations must comply with ASME B 31.1.
 b) Hand-controlled bypasses around reducing valves may be used if the bypass has no greater capacity than the reducing valve. Hand controlled bypasses may be used around reducing valves at greater capacity than the reducing valve if the system or unfired pressure vessel has adequate relief or safety valve protection, or meets the requirements of the high pressure system.
 c) A pressure gauge must be installed on the low-pressure side of a reducing station.
 d) Pressure reducing valves shall be Spence Engineering Co., Type ED. Consideration shall be given to the operating range (lbs./hr. flow) of the system and the use of parallel valves to prevent erosion of the valve and seat.
 e) Steam metering should be pressure-compensated and performed on the high pressure side of the PRV station and should be an inline vortex-shedding flowmeter (Yokogawa or Rosemount pressure transmitter and flowmeter preferred). The pressure transmitter should be equipped with a two-valve manifold and the flowmeter should be installed with the shedder bar in the horizontal position.
 f) A/E must follow Spence Engineering Co. installation requirements/instructions.
 g) A/E to design steam system for a step down in two stages from delivery pressure to less than 15psig working pressure.

5. Strainers:
 a) Steam, 15 PSIG or less, 2-inch and smaller: Forged steel threaded or socked welded strainer.
 b) Steam, 15 PSIG or less, larger than 2-inch: ANSI Class 150 flanged, cast carbon steel strainer.
 c) Steam, greater than 15 PSIG, 2-inch and smaller: Forged steel threaded or socked welded strainer.
 d) Steam, greater than 15 PSIG, larger than 2-inch: ANSI Class 300 flanged cast carbon steel strainer.
 e) Condensate, 2-inch and smaller: Forged steel threaded or socked welded strainer.
 f) Condensate, larger than 2-inch: ANSI Class 150 flanged, cast carbon steel strainer.
6. Flash Tanks: ASME-rated horizontal tanks size to assure dryness of the steam released and to avoid carry-over of water by the steam. Consideration shall be given to flash steam heat recovery or domestic water preheat systems in lieu of wasting the flash steam.

7. Condensate Coolers: All steam condensate systems shall be fitted with a tank-type condensate cooler properly sized to limit the maximum discharge temperature to 140°F. Where condensate is collected near domestic hot water heaters, condensate will be piped to preheat (economize) stored water.

8. Vacuum breakers are required for any steam coil. Basis of design shall be Hoffman Specialty, Model 62.

23 23 00 Refrigeration Piping

1. All piping for refrigeration systems shall be type ACR copper tubing conforming to ASTM B-280. All tubing shall be hard drawn.

2. Fittings shall be wrought copper conforming to ASNI B16.22.

3. All joints shall be brazed using fast flow cadmium bearing silver brazing alloys composed of 45% silver, 15% copper, 16% zinc and 24% cadmium.

4. All refrigeration system piping arrangements, pitching and sizing shall be as recommended by the manufacturer and indicated on the drawings.

5. All refrigeration systems shall be tested, evacuated and charged by the installing contractor. The contractor shall verify, in writing, that the system has been tested.

6. All systems shall be designed with the following:
 a) Service valves.
 b) Liquid line sight and moisture indicators at the condenser or receiver and at the entrance to the expansion valve.
 c) Liquid line filters with a valved bypass to permit changing and/or bypassing of the filter without system shutdown.

7. The A/E shall include a requirement that start up and service of refrigeration systems shall be done by EPA-certified technicians and refrigerants shall be handled and reclaimed in accordance with EPA requirements.

23 23 23 Refrigerants

1. Refrigerants used in HVAC and other cooling equipment must be approved by University Project Manager during the Design Phase of any project.

2. The design of all refrigeration equipment 75 tons and larger must include an analysis addressing the noise impact upon surrounding areas and the aesthetic impact if located on the exterior of the
building.

3. Prior to the selection of compressor unit, i.e., reciprocating, centrifugal, screw or scroll, the Engineer of Record must submit an analysis of the various compressor types, conclusions and recommendations to the University for approval. The analysis shall address operating efficiency; costs associated with noise control implementations, maintenance, service, availability from manufacturer, refrigerant type, part load performance, electrical characteristics and estimated construction cost.

4. All refrigeration system specifications must be specified to include factory start-up and servicing. The factory start-up shall include the check-out of all controls, safety components and performance characters. Facilities Management shall actively observe the testing and start-up of the systems.

5. Small individual packaged split systems are discouraged. Prior approval for the use of such must be obtained from the University’s Project Manager or Facilities Management Department.

6. All air cooled condensers must contain condenser fan modulation controls as a means of capacity control for low ambient operation. Condenser fan speed control is not required where associated equipment is equipped with air-side economizer cycle. Condenser fan dampers are not permitted.

7. Mechanical rooms shall contain a refrigerant detector with an audible and visual alarm. The installation shall be in accordance with the City of Philadelphia’s Fire Code and Mechanical Code.

8. Refrigeration units or systems having a refrigerant circuit containing more than 220 pounds (100 kg) of Group A1 or 30 pounds (14 kg) of any other group refrigerant shall be provided with approved emergency signs, charts, and labels in accordance with NFPA 704 and the City of Philadelphia's Mechanical code.

9. Mechanical contractor is responsible for coordinating with equipment manufacturer in regards to final pipe sizing and additional required accessories based on the final layout prior to installation.

23 25 00 HVAC Water Treatment

1. The specifications shall require the Mechanical Contractor to engage, as a subcontractor, the services of the University’s Water Treatment Contractor (Rochester Midland Corporation) to provide the following:
 a) Chemical cleaning of new and existing systems for each project.
 b) Disinfection of new and existing systems for each project.
 c) Provision of all chemicals and equipment for the following systems as applicable:
 (1) Condenser water.
 (2) Closed re-circulating systems.
2. The A/E and mechanical contractor shall determine if any existing systems need to be included in the water treatment scope of work.

3. The make-up water piping to each system (condenser, glycol, re-circulating, etc.) shall contain a water meter to monitor make-up water quantities. Each make-up water system is to be equipped with a backflow preventer, refer to Part 12 in Section 23 21 16 for approved manufacturer and model.

4. All water treatment systems are to be located indoors. Systems located outdoors are prohibited.

5. The following treatment parameters shall be maintained:
 a) Condenser Water Systems:
 (1) Phosphate: 5-10 parts per million.
 (2) Molybdate / Polymeric Silicate: 5-10 parts per million (as MoO4).
 (3) Triazole Inh: 2-5 parts per million.
 (4) pH: 7.5-8.5.
 (5) Legionella pneumophila: Negative U.V. analysis.
 (6) Organic Growths: None to trace. Field microbiological test maximum 20,000 organisms per milliliter 24 hours after biocide addition.
 (7) Cycles of Concentration:
 (a) Concentration 4-6 (1,600-2,400 micro ohms conductivity).
 (8) Corrosion Rates:
 (a) Steel: Less than 5.0 mils per year.
 (b) Copper: Less than 1.5 mils per year.
 b) Closed Recirculating Systems:
 (1) Catalyzed Sodium Sulfite (as SO3): 30-50 parts per million.
 (2) Phenolphthalein Alkalinity: 10-50 parts per million.
 (3) pH: 8.0-9.5.
 (4) Corrosion Rates:
 (a) Steel: Less than 5.0 mils per year.
 (b) Copper: Less than 1.5 mils per year.

6. Contact information for the University’s Water Treatment Contractor: Rochester Midland Corporation – Vince Marcucci, 856-207-6302 and vmarcucci@rochestermidland.com.

23 31 00 HVAC Ducts and Casings

1. The use of duct liner for acoustical purposes is only permitted with University approval prior to incorporating into a system’s design. Its use will only be permitted where it is impractical or not feasible to utilize other sound attenuating devices, such as inline duct silencers or elbow silencers. Double walled ducts consisting of an outer wall of galvanized sheet metal, an inner wall of perforated galvanized sheet metal with insulation sandwiched between the layers is permitted but may prove cost prohibitive.
2. All Low Pressure ductwork shall be designed in accordance with SMACNA Standards modified as follows:
 a) Radius elbows with an outer line radius of 1.5 times the duct width are preferred to square elbows.
 b) All square elbows must be constructed with double thickness turning vanes.
 c) Air extractors and splitter dampers are not permitted.
 d) Maximum duct transition angles shall be 3-inches per foot per side.
 e) Minimum duct gauge shall be:
 (1) 24 for ducts 1” and up to and including 30”.
 (2) 22 for ducts 31” and up to and including 43”.
 (3) 20 for ducts 44” and up to and including 60”.
 (4) 18 for ducts 61” and greater.
 f) All transverse joints shall be of the pocket lock type with a minimum height of 1” and maximum spacing of 8'-0”. Refer to SMACNA standards for pocket type locks in duct construction requiring a rigidity classification beyond the 1” height and 8’ spacing.
 g) Specify a Seal Class "A" for all systems. Project specifications shall clearly define the modified standard in addition to referencing SMACNA standards. Solvent based sealants that are flammable when curing are prohibited in occupied buildings.

3. Medium and High Pressure Duct Construction:
 a) Prior approval must be attained from the University’s Project Manager or Facilities Management Department for the use of medium and high pressure systems.
 b) Follow SMACNA medium and high pressure duct construction standards.
 c) Specify sealing requirements.
 d) Consideration must be given to the lowest practical velocity and pressure criteria which will fit within the structure and provide adequate service.

4. All duct systems must be designed to meet the sound level requirements listed in General Section I, entitled "Noise and Vibration Control".

5. Drawings must have adequate notation which correlates each duct and terminal device (reheat chill or VAV box) with the central air handling unit from which it is served. The notation must be completed in such a manner as to clearly identifying each system and its components without tracing systems between drawings.

6. The drawings shall indicate the pressure classification of duct systems.

7. Shop drawings of all sheet metal ductwork and related equipment must be furnished in a scale of 3/8-inch equals a foot.

8. All materials for all duct systems shall be specified by the designer as follows:
 a) General Ductwork (Supply and Return Air Systems) - Hot dipped zinc-coated galvanized sheet metal conforming to ASTM AS-25, Class 1.25.
b) Stainless Steel – Specify type 316 as the basis of design, however A/E is to verify per application.
 (1) All exhaust systems serving equipment using hazardous gases (fluorine, ammonia, and chlorine) are to be welded stainless steel from the point of connection to the exhaust main.
 (2) All exhaust systems serving equipment using non-hazardous gases are to be welded stainless steel from the point of connection to the Phoenix valve and then galvanized from the Phoenix valve to the exhaust main.

c) Aluminum Duct - ASTM B-209, Alloy Number 3303, Tripen H-14. No aluminum ductwork shall be utilized except where required for chemical compatibility in laboratory exhaust systems.

d) Fiber-reinforced plastic (FRP) shall be not be utilized except where required for chemical compatibility in laboratory exhaust systems and approval from University EH&S.

9. All rectangular panels above 10-inches in width must be cross broken on all four sides.

10. All ductwork and accessories must be supported from the structure only.

11. Plenum chambers shall be constructed of 18 gauge metal with 1-1/2" x 1-1/2" x 3/16" galvanized angles up to 10 feet in height. Above 10 feet, angles of 2" x 2" x 1/4" must be used. Angles must be installed on all vertical and longitudinal seams and on a maximum center of 4 feet.

12. Low pressure round ductwork shall be specified as follows:
 a) Lock-type spiral seam or lock-type longitudinal seam duct construction.
 b) Minimum gauge as follows:
 (1) Longitudinal lock - 22 gauge.
 (2) Spiral lock - 24 gauge.
 c) Fittings shall have a construction radius of 1.5 times the diameter.
 d) All branch connectors shall be made with 45 degree laterals on centerline of duct.
 e) All seams shall be sealed.

13. Flexible Ductwork:
 a) Flexible ducting shall be constructed of wire frames and fiberglass plastic film. Flexible locking, plastic tie wraps are not acceptable.
 b) Ducts shall be aluminum with spiral fabricated triple lock. Pressure drop shall not exceed 0.23 inches of water for 100 feet of duct for 300 CFM in an 8-inch duct.
 c) Duct shall conform to NFPA 90A and shall be UL listed, Specification 181, Class 1, including insulation.
 d) Maximum flexible ductwork length to be 5'-0”.
 e) Insulation, where required, shall be on the exterior of the duct.

14. Ducts penetrating through masonry walls, floors and roofs shall be clearly detailed on the drawings. The details shall, as a minimum, indicate curbs, flashing, counter flashing, fire dampers, sleeves, sealing and weatherproofing.
15. Horizontal exterior rectangular ducts shall be fabricated with all longitudinal seams at the bottom and installed with a top surface slope of 1/4-inch per foot. Supporting shall be detailed on the drawings.

16. Specify special duct sealing and weatherproofing requirements for all exterior duct applications. Refer to Section 23 07 13 “Duct Insulation”.

17. Kitchen range (Type 1) and dishwasher (Type 2) exhaust hoods and ductwork shall be designed, constructed, and installed in accordance with NFPA and 2009 International Mechanical Code requirements.

18. Clothing dryer exhaust systems shall meet the requirements of the 2009 International Mechanical Code, Section 504 and the clothing dryer manufacturer’s exhausting requirements. If no guidance is available from the manufacturer, and as a design minimum, all clothing dryer exhaust systems shall meet the requirements of the “Service Manual for Exhausting Dryers” by Whirlpool Corporation. (Service Manual No. LIT603197-B). Clothing Dryer Exhaust shall follow manufacturers design parameters for length and allowable bends. Dryer exhaust ductwork should be properly pitched and drained.

19. Shower exhaust systems shall be constructed of material suitable to avoid corrosion and sloped to drain provisions. When the shower exhaust is mixed with a volume of general exhaust air equal to 200% of the shower exhaust, standard galvanized may be used. Toilet rooms with showers need not comply with requirement.

20. Laboratory duct material must be reviewed and approved by the University’s Project Manager or Environmental Health and Safety Department. Acceptable duct materials are as follows:
 a) Plastic coated steel.
 b) Stainless steel.
 c) Plastic ducts such as Dynel reinforced polyester. When using plastic ductwork, all fire code and sprinkler code requirements must be addressed.

21. Internal duct devices shall be equipped with fully accessible access doors.

22. Fire dampers are prohibited in hazardous exhaust ducts.

23. Automatic fire protection systems are prohibited in laboratory hazardous exhaust ducts.

24. All round ductwork connections to VAV’s are to have a straight run of duct equal to 2-1/2 to 3 times the duct diameter, i.e. 10 inch diameter duct should be 25 to 30 inches long. Remainder of branch ductwork back to main to be round or rectangular and sized for maximum VAV CFM as scheduled.

25. Duct joint sealant to be silicone base type. Water based sealants are prohibited. Approved manufacturers are United McGill, 3M Products or approved equal.
23 33 00 Air Duct Accessories

1. Each duct to individual diffusers and registers and branch ductwork shall have an individual balancing damper, approved manufacturers are Ruskin, Tamco or approved equal. Shop made dampers are **prohibited**. Dampers in diffusers and registers shall be used for fine tuning the airflow only.

2. Specify flexible connections not less than 3" wide at the inlet and outlet of all rotating equipment and at all building expansion joints. The connector fabric shall be fire retardant and asbestos free.

3. Access doors shall be hinged and be constructed of a minimum 22 gauge materials. The doors shall be installed with stiffening angle supports frame. Minimum door size shall be 16"x16". Access doors must be installed both upstream and downstream of all duct mounted equipment including but not limited to:
 a) Coils.
 b) Fire, smoke and combination fire and smoke dampers.
 c) Automatic dampers.
 d) Filters.
 e) Controls.
 f) Fans.

4. Fire dampers shall be of the out-of-air stream design, Style B. Basis of Design to be Ruskin or approved equal. All projects will conform to the following:
 a) The locations of all fire dampers must be indicated on the drawings as required meeting applicable codes.
 b) Both NFPA and SMACNA design standards must be referenced as a standard for the installation of the dampers.
 c) Each fire damper shall be tested to ascertain proper operation.

5. Intake and exhaust louvers shall be designed within the following parameters:
 a) Approved manufacturers are Ruskin, Tamco, or approved equal.
 b) Intake:
 (1) Maximum face velocity: 600 FPM.
 (2) Maximum water penetration: Less than 0.15 oz. per ft. sq. free area. 15 Minute duration.
 (3) Maximum pressure drop: Less than 0.15 in. w.g.
 (4) Maximum free area: 57% of face area.
 (5) **When intake louver is a part of an airflow measurement station, A/E is to follow the airflow measurement station manufacturer’s installation requirements.**
 c) Exhaust:
 (1) Maximum face velocity: 1,250 FPM.
 (2) Maximum free area: 57% of face area.
 (3) Maximum pressure drop: 0.20 in. w.g.
 d) Drainable type.
e) Coordinate bird and insect screens with system type. Screens are prohibited in dryer exhaust systems.

6. Duct coils shall be supported independently of the connected ductwork.

7. Modulating dampers shall be sized for linear airflow control within the angle of rotation with minimum pressure drop. The units shall be constructed of minimum 16 gauge galvanized steel frames and blades having a maximum width of 6". Each blade shall be constructed with edge seals and shall be sealed to minimum 1/2" steel angles. End bearings shall be of the self-lubricating type. Maximum damper leakage shall be 2% when closed across a 4" static pressure differential.

23 33 19 Duct Silencers

2. Sound attenuators shall be installed on all systems as required to meet the specified noise criteria levels in General Section I, entitled "Noise and Vibration Control", of the Guide.

4. Casings are to be constructed with materials specified for duct system. Outer casing minimum 22 gauge; interior casing (rectangular silencers) minimum 26 gauge perforated.

5. Provide packless type traps for corrosive or fume exhaust systems.

6. For packed type, provide fiberglass cloth liner for offices, classrooms, auditoriums, etc. and plastic or mylar encased packing to prevent fume absorption or packing erosion for laboratories and healthcare.

7. Packing is to be an inorganic mineral or glass fiber of density sufficient to obtain specified acoustic performance. Maximum flame spread/smoke developed/fuel contributed: 25/50/50 when tested in accordance with ASTM E84, NFPA 255 or UL 723.

8. Make units airtight by use of a duct sealing compound. Construct traps to withstand a differential air pressure of 8 inches w.g. inside to outside of casing.

9. Sound traps at Vane Axial fan inlets and discharges shall match fan diameter connection and internal hub size/design.

10. A/E is to verify size and shape of all silencers and accurately display them on the final construction drawings, especially elbow type silencers.
23 34 13 Axial HVAC Fans

1. Axial Fans are prohibited except in fume hood exhaust applications. Axial fans used in fume hood applications shall be Strobic Air Corporation modular bisected inline duct fans.

2. Fans shall be provided with disconnect switches, companion flanges, sound attenuators and spark resistant motors as required to suit application.

3. All fans shall be direct drive. Belt drives are prohibited except where stipulated by code.

23 34 16 Centrifugal HVAC Fans

1. All fans shall be installed to permit servicing of the fan bearings, motor and drive package from the floor level without the use of a ladder.

2. All units of capacity 15,000 CFM or larger and installed six feet above the floor or higher must be provided with stable catwalks constructed of structural grade steel and steel grating. Access ladders shall be integral with the catwalks.

3. Centrifugal fans may be of the forward curved, backward inclined or airfoil types. The Engineer shall select the most efficient type for the operating range of the system.

4. Fans serving variable air volume systems shall be controlled using variable frequency drives and airflow measuring stations. Room pressure sensors, inlet vanes, discharge dampers, eddy current clutches, etc. are prohibited.

5. Units shall be provided with safety control components such as fire stats, smoke detectors and or smoke dampers as per code.

6. All fans shall be AMCA certified. Provide fans rated for the particular class of operation based upon outlet velocity and static pressure in accordance with AMCA standards.

7. Fans installed in exhaust systems handling corrosive vapors shall be coated or constructed of materials compatible with the intended environment. All laboratory fume hood fans must be reviewed with the Environmental Health and Safety Office and operated in accordance with the Laboratory Design Standard 2013 (see Appendix A).

8. Units shall be provided with hinged access/inspection doors located in the fan housing.

9. All units shall be provided with belt guards.

10. Units installed outdoors shall be provided with weather resistant covers.

11. Shafts and bearings shall be designed for an average life of 250,000 Hrs.
12. Provide exterior units with scroll drains. Drains on units serving corrosive or toxic systems shall be installed with a valve.

13. Units serving flammable vapor systems shall be of spark resistant construction.

14. All exhaust fans serving fume hoods, isolation areas, or hazardous substances shall be installed with discharge ductwork which extends a minimum of 10'-0" above the roof and 2'-0" above surrounding screens, parapet walls, etc. The discharge duct shall terminate in a reducer to provide a discharge velocity which assures the mixing of the effluent above the building's near wave. Discharge ductwork must be self-supporting or structurally supported. Guy wires are prohibited.

15. All fans must be properly identified. Fans serving fume hoods or isolation rooms must be identified by the isolation room or room in which the fume hood is located. Each fan shall be labeled with the following:
 a) Fan Number issued by Facilities Management.
 b) System and area served (or fume hood and room number).

16. Each unit shall be provided with a disconnect switch and each mechanical room and roof area where mechanical equipment is located shall be provided with an electrical receptacle rated for 120V, 20 Amps.

17. Fans serving fume hoods or isolation rooms shall be on emergency power.

23 36 00 Air Terminal Units

1. Approved manufacturers are Anemostat, Kruger, Price, Titus, Trane and Enviro-Tec,

2. Casing material to be steel, ASTM A653/A653M, lock forming quality, G90 galvanized for galvanized duct systems. Use ASTM A240, Type 304 stainless steel for stainless steel duct systems. Use Type 304L when unit connections will be welded to ductwork. Follow SMACNA Standards and Section 23 31 00 of the Guide.

3. Casing liner, where permitted, use a minimum 3/4-inch thick closed-cell foam insulation in conformance to NFPA 90A.

4. Leakage:
 a) Casing Leakage: Maximum 1 percent of flow at 2 inch w.g.
 b) Damper Leakage: Maximum 3 percent of flow at 4 inch w.g.

5. Coordinate controller location and orientation with sheet metal shop drawings to provide access for service.

6. Reheat Coils: Hot water or electric type as specified in Section 23 82 16 of the Guide. Mount coils, including headers and return bends, entirely within insulated casing. Provide access panel in bottom of unit casing to service water coils. Size coil for maximum cooling airflow CFM.
The University normally does not have the reheat system on during the cooling season as an energy saving measure.

7. Factory set air flow requirements for each unit as shown. Use air flow across sensor to determine setpoint.

8. Maximum NC level schedule based on maximum airflow with inlet pressure of 1.0 inch static pressure. Sound pressure level shall not exceed specified NC curve at any frequency band.

9. Prime Professional to select unit based on maximum airflow being in the mid-range, approximately, of the unit. Approximate airflow velocities are to be 2,000 FPM max. and 500 FPM min.

10. Unit manufacturer is to provide an enclosure for the approved BAS manufacturer's controller.

11. Controllers are per Division 25.

23 36 00.1 Fume Hood and Laboratory Fume Hood Controls

1. Constant Volume Labs
 a) Fume Hoods:
 (1) Fume Hood Alarming only:
 (i) Fume hood Monitor: Phoenix Controls model FHM530-ENG.
 (ii) DP Switch: Dwyer model ADPS-03-2-N (range .2 to 2.0”WC).
 (2) Fume Hood Alarming and Constant Volume Control:
 (i) Fume hood Monitor: Phoenix Controls model FHM530-ENG.
 (ii) DP Switch: Dwyer model ADPS-03-2-N (range .2 to 2.0”WC).
 (iii) Constant Volume Air Valve: Phoenix Controls Model CEVB series sized for required flow.
 b) Room Control:
 (1) Supply Air:
 (i) Constant Volume Air Valve: Phoenix Controls Model TSVA Series sized for required flow.
 (2) Temperature Control:
 (i) Discharge Temperature Sensor: Phoenix Controls Model PTS102-D-04.
 (ii) Space Temperature Sensor: Phoenix Controls Model PTS102-R-OS.

2. Variable Volume Labs.
 a) Fume Hoods:
 (1) Fume Hood Control:
 (i) Fume hood Monitor: Phoenix Controls model FHM630-ENG.
 (ii) Sash Sensor: Phoenix Model VSS4-0100-A (or as required by hood sash).
 (iii) Zone Presence Sensor: Phoenix Model ZPS320.
 (iv) Variable Volume Exhaust Valve: Phoenix Model EXVB series sized for required flow.
b) Room Control:
 (1) Supply Air:
 (i) Variable Volume Air Valve: Phoenix Controls Model MAVA series sized for required flow.
 (2) General Exhaust:
 (i) General Exhaust Air Valve: Phoenix Controls Model EXVA series sized for required flow.
 (3) Point Exhaust:
 (i) Constant Volume Air Valve: Phoenix Controls Model CEVA Series sized for required flow.
 (4) Temperature Control:
 (i) Discharge Temperature Sensor: Phoenix Controls Model PTS102-D-04.
 (ii) Space Temperature Sensor: Phoenix Controls Model PTS102-R-OS.

23 36 00.2 Air Quality Monitoring System

1. Constant Volume Labs.
 a) Not Required.

2. Variable Volume Labs.
 a) Aircuity Components:
 (1) Information Management Server (IMS).
 (i) Internet Access shall be provided at IMS Location.
 (ii) One IMS Per Building to interface to Lab Control System (LCS) via hardwired connection:
 i. One Indoor Air Quality Command per Lab from Air Data Router (ADR).
 ii. One Total Flow Feedback (Exhaust) from LCS to Air Data Router (ADR).
 (iii) 120V power Required at 20 Amp.
 (2) Aircuity 700 Sensor Suite shall contain the following:
 (i) TVOC Sensor PN: SEN-TVC-1.
 (ii) Optical Particle Sensor PN: SEN-PAR-1.
 (iv) Variable Volume Exhaust Valve: Phoenix Model EXVB series sized for required flow.
 (v) Each Sensor suite shall monitor up to 20 Lab spaces (each space 600 FT² max).
 (vi) Each Sensor Suite Shall have on supply Air Reference Probe.
 (vii) Each Sensor suite shall have a vacuum pump HFP100.
(3) Aircuity Air Data Router (ADR):
 (i) Each Router shall be mounted in accessible location without need to enter Lab.
 (ii) Each ADR shall monitor up to four (4) Lab Spaces.
 (iii) Each ADR shall be equipped with EXP2 Expansion Point Module to interface to Lab Control System (LCS).
 (iv) Each ADR shall be networked to other ADR and to the Sensor Suite via Aircuity Structured Cable to deliver air samples to Sensor Suite.

(4) Probes:
 (i) In most cases the general exhaust is the ideal location for the probe to sample the lab air and compare it to the supply air. Probe for duct mounting is DBP200 series.
 (ii) Room sensors can be used if required. The room sensor is the RS200 series.

b) System Overview:
 (1) Provide Monitoring of all lab spaces.
 (i) Small Labs (less than 600 ft²) shall have one sensor per lab preferably in General Exhaust Ductwork.
 (ii) Large labs (Greater than 600 FT²) shall have one sensor per every 600 ft² preferably in General Exhaust Ductwork.
 (2) One ADR (Air Device Router) per every four monitored spaces shall be mounted outside of the lab space in an area that can be accessed.
 (i) ADR shall have one (1) AO and one (1) AI per lab space for interface to LCS (Lab Control System).
 (3) Each Sensor Suite shall be equipped with the sensors and vacuum pump (HFP100) to pull samples from each space and to compare the samples from the supply air.
 (i) Sensor suite shall be mounted in an accessible location outside the research space.
 (ii) Access is required on a regular basis as the sensors are changed every six (6) months.
 (iii) Each Sensor suite shall monitor up to twenty (20) Spaces. Additional Sensor suites are able to be added to the network as required.
 (4) IMS (Information Management System) shall be mounted near one of the sensor suites.
 (i) Internet connection required for networking to Aircuity Central Monitoring and Adviser Services.

23 37 13 Diffusers, Registers and Grilles

1. Approved manufacturers are Anemostat, Kruger, Price, Titus, and Tuttle & Bailey.

2. General Requirements:
 a) Construction Material: Steel, unless noted otherwise. Coordinate material with University Facilities.
 b) Finish exposed surfaces with baked off-white powder coat unless specified otherwise.
 c) Furnish frames appropriate to surrounding construction material.
 d) All return/exhaust registers in the ceiling are to have fixed louvers with a deflection.
e) Except as specified below, furnish units with volume control damper in neck, adjustable through face without removal. The following units do not require volume control dampers:
 (1) Transfer grilles.
 (2) Return grilles into plenum ceilings.
 (3) Linear slot diffusers.

3. Design criteria as follows:
 a) Air outlets shall be selected to result in a maximum occupied space velocity of 50 FPM.
 b) Throws based upon a terminal velocity of 100 FPM, shall not exceed 1/2 the distance between adjacent diffusers or 100% of the distance between the outlet and the wall.
 c) All units shall be provided with opposed blade dampers.
 d) Aluminum units shall be installed in wet areas.
 e) Linear diffusers shall be designed and specified for use at perimeter glass areas in all VAV applications.
 f) All linear diffusers are to have a minimum of two (2) slot openings. Diffusers located along the room perimeter are to have one (1) opening down and the other angled. Diffusers located in the center are to have both openings angled
 g) All supply and return units shall have a maximum neck velocity of 500 FPM.

4. Furnish tools required to change deflection of air outlets or inlets.

5. Accessories:
 a) Alignment bars for continuous length linears.
 b) Insulated square to round adapters.
 c) Insulated linear supply and return air plenums on all sides.
 d) Continuous length perforated plate, sized for uniform velocity, mounted in plenum above linear diffusers where plenum duct connection has no volume damper and where plenum connections exceed 30 inches on center.
 e) Blank-Off Plates: Matte black painted. Permitted only on linears where shown.

6. Ductsox:
 a) Approved manufacturers are Ductsox, Fabricair and KE Fibertec.
 b) System shall be installed with U-Track suspension system along with SkeleCore IHS consisting of an internal 360 degree hoop system, spaced (5) five foot on center.
 c) Fabric shall be Verona porous fabric (2 CFM/sq. ft.) with linear vents.

23 38 13 Commercial-Kitchen Hoods

1. The design and installation of commercial kitchen exhaust hoods and associated air, ductwork, and fire suppression components and systems shall be in accordance with the requirements and limitations of the following references and others as required:
 a) 2009 International Mechanical Code.
 b) 2009 International Fire Code.
 c) NFPA 17A, “Standard for Wet Chemical Extinguishing Systems”.
e) UL 710, “Exhaust Hoods for Commercial Cooking Equipment”.

f) UL “Heating, Cooling, Ventilating, and Cooking Equipment Directory”.

2. Type I hoods shall be installed where cooking appliances produce grease or smoke, such as occurs with griddles, fryers, broilers, ovens, conveyor ovens, ranges, and wok ranges.
 a) An approved automatic fire suppression system complying with the International Building Code and International Fire Code where Type I hoods are required
 b) Where fire suppression systems are required under Type I hoods, the system shall be interwired with shunt trip breakers and gas solenoid valves of equipment located below the hood for power and fuel shutoff during system actuation in accordance with NFPA 17A.
 c) Type I hoods shall be constructed of stainless steel not less than 0.037-inch (20-gauge) thick.
 d) Type I hoods shall be secured in place by non-combustible supports.
 e) Ducts serving Type I hoods shall be independent of all other exhaust systems and constructed of steel not less than 0.055-inch (16-gauge) or stainless steel not less than 0.044-inch (18-gauge) thick. Joints, seams, and penetrations, as well as duct-to-hood joints, shall be made with a continuous liquid-tight weld or braze made on the external surface of the duct system.

3. Type II hoods shall be installed where cooking or dishwashing appliances produce heat, steam, or products of combustion and do not produce grease or smoke, such as steamers, kettles, pasta cookers, and dishwashing machines. Refer to the Code for notable exceptions.
 a) Type II hoods shall be constructed of stainless steel not less than 0.024-inch (24-gauge) thick.

4. Makeup air shall be supplied during the operation of commercial kitchen exhaust systems that are provided for commercial cooking appliances. The amount of makeup air shall be approximately equal to the amount of exhaust air.

5. Following installation, test ventilators serving commercial exhaust hoods for compliance with specified requirements and those of the authority having jurisdiction. Perform testing after air-handling systems have been balanced and adjusted.

6. Smoke Test:
 a) Perform a smoke test with cooking equipment served by ventilator turned off.
 b) Perform test with supply and exhaust fans serving the food service kitchen area turned on.
 c) Move a smoke bomb around the perimeter of cooking equipment at the top surface.
 d) No visible smoke shall escape from the ventilator canopy into the room.
 e) Submit a field test report indicating the dates and times of tests and certify the test results.

23.38.16 Fume Hoods

1. The design and installation of fume hoods and associated systems shall comply with the Laboratory Design Standard 2013. A copy of this Standard & Design Guide is included in Appendix A.
2. Refer to Section 23 31 00, “HVAC Ducts and Casings” and Section 23 33 00, “Air Duct Accessories” for requirements and limitations of ductwork and accessories serving fume hoods.

3. Refer to Section 23 34 16, “Centrifugal HVAC Fans” for requirements and limitations associated with fans serving fume hoods.

4. All fume hoods must be properly identified in accordance with the requirements of the Laboratory Design Standard 2013 (see Appendix A).

23 41 00 Particulate Air Filtration

1. Water and oil wash systems are prohibited.

2. Carbon-type filters are permitted for special applications requiring the removal of gases only after review and approval by the University’s Project Manager or Facilities Management Department.

3. Pre-filters for all packaged air handling equipment shall be V-Bank mini-pleat fiberglass disposable type with pleat separators, polyurethane pack-to frame sealant, polystyrene enclosing frame equal to Camfil Farr Durafil ES filter. Filters are to be arranged for maximum surface area. The maximum filter velocity shall not exceed 400 FPM. Static pressure shall be calculated using the manufacturers recommended maximum. The filter system shall have an average efficiency of 35% (MERV 8) as tested in accordance with ASHRAE Standard 52.2-2007 “Method of Testing General Ventilation Air Cleaning Devices for Removal Efficiency by Particle Size”. A magnahelic gauge to monitor pressure shall be provided. The magnahelic gauge shall be located and oriented to permit viewing without the need for a ladder.

4. Final filters for all packaged air handling equipment shall be V-Bank mini-pleat fiberglass disposable type with pleat separators, polyurethane pack-to frame sealant, polystyrene enclosing frame equal to Camfil Farr Durafil ES filter. Filters are to be arranged for maximum surface area. The maximum filter velocity shall not exceed 500 FPM. Static pressure shall be calculated using the manufacturers recommended maximum. Filters are to be arranged for maximum surface area. The filter system shall have a minimum efficiency of 65% (MERV 11) as tested in accordance with ASHRAE Standard 52.2-2007 “Method of Testing General Ventilation Air Cleaning Devices for Removal Efficiency by Particle Size”. Final filters shall be installed at the discharge of the unit with a magnahelic gauge to monitor pressure increase.

5. Final filters for all 100% outside air equipment shall be V-Bank mini-pleat fiberglass disposable type with pleat separators, polyurethane pack-to frame sealant, polystyrene enclosing frame equal to Camfil Farr Durafil ES filter. Filters are to be arranged for maximum surface area. The maximum filter velocity shall not exceed 500 FPM. Static pressure shall be calculated using the manufacturers recommended maximum. Filters are to be arranged for maximum surface area. The filter system shall have a minimum efficiency of 90% (MERV 13) as tested in accordance with ASHRAE Standard 52.2-2007 “Method of Testing General Ventilation Air Cleaning Devices for Removal Efficiency by Particle Size”. Final filters shall be installed at the discharge
of the unit with a magnahelic gauge to monitor pressure increase.

6. HEPA filters shall be installed terminally or at the unit as required.

7. Any deviation from the above standard filters must be submitted to the University’s Project Manager or Facilities Management Department for review and approval.

8. Sufficient filters to service the equipment for one year, after occupancy by the owner shall be included with all HVAC equipment.

9. Replaceable filters shall be fully accessible without need to move or relocate adjacent components or other items.

10. Contractor to provide one (1) spare set of indicated air filters for each type of equipment required filters.

11. Pre and final filters are to be selected based on a minimum replacement period of three (3) months using Philadelphia air conditions.

23 52 00 Heating Boilers

1. All boilers must be equipped with ANSI/ASME CSD-1 controls (NFPA 85 controls for very large boilers) and be ASME-stamped in compliance with the Pennsylvania Code, latest edition.

2. Application and approved manufacturers:
 a) Residential and smaller commercial cast iron sectional heating boilers (steam or hot water, gas or oil): Weil-McLain, Peerless Boilers, and HB Smith.
 b) Large commercial domestic hot water generators (gas only – copper fin tube): A.O. Smith Corporation, RBI, and Lochinvar LLC.
 c) Large commercial boilers, non-domestic hot water generator type (commercial firetube or watertube, gas and/or oil): Cleaver-Brooks only.

3. Prime Professional is to coordinate with University Facilities in regards to equipment integration to the building’s BAS system. University Greek and Fraternity Houses require local control.

4. Heating hot water system temperatures are to be reset based on outside temperatures, at a minimum.

5. A/E is responsible for identifying and documenting what natural gas pressure and pipe main is locally available at the building with PGW. This information shall be used for determining overall equipment load and pipe sizing. No equipment is to be selected below 4.5 in. w.g., which is PGW’s minimum guaranteed system supply.
23 57 00 Heat Exchangers for HVAC

1. All heat exchangers shall be constructed in accordance with the ASME Pressure Vessel Code, bear the ASME "U" Stamp and be registered with the National Board of Boiler and Pressure Vessel Inspectors.

2. All heat exchangers shall be rated for 150 PSIG operating pressure at 300°F or 300 PSIG if operating steam pressure is greater than 15 PSIG.
 a) Steam heat exchangers are to be fitted with a vacuum breaker.
 b) Automatic control valves for heat exchangers are to be normally closed.

3. All nozzles shall be 150 lb. ASA rated flanges or ANSI Class 300 if the operating steam pressure is greater than 15 PSIG.

4. U-tube heat exchangers shall be used in all steam to hot water applications. Chilled water isolating and condenser water free cooling shall be designed around the use of plate and frame heat exchangers. Where condenser water systems are equipped with heat exchangers, provide 100% redundancy to allow for cleaning without service interruption.

5. U-tube heat exchangers shall be constructed as follows:
 a) Shell - steel.
 b) Tubes - 3/4" OD copper with a maximum tube velocity of 7.5 feet per second.
 c) Heads - cast iron.
 d) Tube sheets - brass or stainless steel.
 e) Tube supports - brass or stainless steel.
 f) Minimum scale factor - 0.002 ft²-hr-°F/btu.
 g) Maximum water side pressure drop - 12 feet of water.

6. Plate and frame exchangers shall be constructed as follows:
 a) Plates - type 316L stainless steel. Plates shall be equipped with gaskets that do not use adhesive for sealing or attachment (use clip-on type gaskets only).
 b) Frames - carbon steel with baked epoxy enamel paint.
 c) Heat transfer coefficient - greater than 1,000 Btu/ft²-hr-°F.
 d) Future capacity allowance: Size frame and bars for future addition of 30 percent more plants.
 e) Basis of design: AlfaLaval (no substitutions).

7. All systems shall be designed to assure adequate service and maintenance clearances for tube pulling and frame dismantling.

23 63 13 Air-Cooled Refrigerant Condensers

1. The use of split-systems and packaged air cooled units is permitted only under the following conditions:
 a) Central chilled water is not available and the space cooling load and layout prohibits the use of an air- or water-cooled chiller system.
b) Prior review and approval by the University’s Project Manager or Facilities Management Department.

2. The design and location of condensing units must consider the effects of noise, aesthetics, and service access.

3. Equipment installed on rooftops shall comply with the following:
 a) Must be accessible through a stairway, not a ladder, which directly accesses the roof where the unit is to be located.
 b) The access door to the roof will be large enough to allow the passage of maintenance equipment and supplies.
 c) Shall be designed with vibration isolation type curbs to reduce noise and vibration transmission to the structure and occupied spaces.
 d) Shall be installed at least ten (10) feet from the perimeter of the roof. Any variance in the actual installation location from the intended location must be approved by the Department of Environmental Health and Safety and Facilities Management.

4. All duct, conduit and piping penetration through the roof shall be installed using prefabricated pipe and duct curbs. The designer is responsible for determining the type of roofing material used, state of the existing warranty and ascertain that the existing warranty remains in effect after all modifications have been completed.

5. Systems requiring low-ambient operation shall use condenser fan speed controls. Damper systems are not permitted.

6. All split-system units in excess of 2,000 CFM must be designed for economizer operation and have relief provisions during economizer operations.

7. All package rooftop systems shall be equipped with economizers and relief provisions. Units in excess of 5 tons capacity shall use return air fans or powered exhaust.

23 64 16 Centrifugal Water Chillers

1. All chillers above 300 tons shall be of the centrifugal type.

2. Refrigerants used in centrifugal water chillers must be approved by University project manager during the design phase of any project.

3. The maximum energy consumption at full load, 42°F leaving water temperature and 85°F entering condenser water temperature shall be 0.6 kW/ton.

4. Drawings shall indicate routing of refrigerant relief piping and shall be designed with recovery systems if code mandated.

5. Consideration must be given to the use of speed controls on chillers to improve part load performance.
6. Where the system design will utilize variable-flow through the condenser and/or evaporator of a centrifugal chiller, the flow through each evaporator, and/or condenser shall be monitored by a flanged, in line, magnetic flow meter of a brand and quality as specified elsewhere in this document.
 a) Unit control: Hard-wire connection for control of start/stop, water setpoint, demand limiting, etc. Integration (Modbus) for general monitoring.
 b) Condenser and evaporator shall be equipped with an Allen-Bradley 836T differential pressure switch with indicator to function as the chiller safety.

7. Preferred manufacturer is Trane. A/E to confirm with Facilities Management for approval of other manufacturers.

23 65 00 Cooling Towers

1. Preferred manufacturers include Evapco, Baltimore Air Coil, and Marley.

2. All cooling towers shall have the following characteristics:
 a) Modular cell, induced-draft type with vertical discharge, cross flow and counter flow arrangements.
 b) Gear driven fans are preferred. Provide a close-coupled oil sight glass visible from the exterior of the tower on gear driven units. Maintenance and/or inspection of the fan motor and drive assembly shall not require personnel to enter the water distribution plenum.
 c) Propeller-type fans which are individually adjustable and replaceable.
 d) Fill, louvers and drift eliminators shall be constructed of 15 Mil PVC Capable of service up to 125°F and supported by hot-dipped galvanized structural tubing, stainless steel, or non-corroding material. Drift losses shall not exceed 0.005% of the design GPM. Fill shall be elevated above the cooling tower basin to permit cleaning.
 e) Basins (hot and cold), framework, casing, fan deck and fan cylinder shall be constructed of one of the following options:
 (1) Fiberglass reinforced polyester, stainless steel and PVC.
 f) Design criteria shall be based upon 95°F entering water temperature, 85°F leaving water temperature, and 78°F wet bulb ambient air temperature.
 g) Provide a steel ladder, ladder extension (length to be within 6 inches of roof), cell partitions, fan cylinder extensions and hot water basin covers. Hot water basin covers shall be hinged to facilitate access.
 h) The cooling towers shall be located so that the hot water basin is the highest point in the condenser water system. The difference in elevation between the condenser pump impeller and the cold water basin shall be such that the net positive suction head available entering the pump will be greater than the pump requirements when using a fluid vapor pressure of 14 PSIA.
 i) Cooling towers shall be located in areas that are fully accessible.
 j) Tower efficiency shall not be reduced by cosmetic screening.
 k) The location of the tower shall take into consideration the effects of tower noise upon adjacent occupied spaces and consideration of the building's wake and prevailing wind, etc.
l) The tower, less motor, shall be warranted for five (5) years.
m) Provide a free-standing ladder and platform system with railings to permit maintenance access to the fan motor, fan drive system, inlet basins, outlet dampers, and any other appurtenances that require adjustment or maintenance. The ladder and platform system shall be constructed of structural steel and shall incorporate a lifting device (articulating crane arm, etc.) to facilitate the removal and installation of the fan motor and gear drive.
n) Cooling tower fan motors shall be driven by ABB variable speed drives, refer to Part 9 under section 23 05 13 for model(s).
o) Cooling towers will have vibration switches in the fan control circuit.
p) Stainless steel cooling tower sump screens are to be provided.

3. Unit control via BAS system.

4. Provide sound attenuation around exterior motor to direct motor noise up. Attenuation to be designed based on the following:
a) Do not restrict airflow around the motor.
b) Do not impact the motor shaft.
c) Waterproof housing.
d) Easily removable for maintenance accessibility.

23 70 00 Central HVAC Equipment

1. Preferred manufacturer and model for rooftop air handling units is Trane IntelliPak.

2. Unit must include connections for “a conventional thermostat connection”, i.e. R,G,W,Y, etc., to allow for direct BAS control.

3. Refer to Section 23 82 16 “Air Coils” for design standards relating to coils integral with air handling units.

4. All units must be floor-mounted within Mechanical Rooms or be custom rooftop units with heated and ventilated service corridors no less than four feet in width. Any necessary deviation from this standard dictated by site conditions, must be reviewed and pre-approved by the University’s Project Manager or Facilities Management Department.

5. Equipment installed on rooftops shall be installed at least ten (10) feet from the perimeter of the roof. Any variance in the actual installation location from the intended location must be approved by the Department of Environmental Health and Safety and Facilities Management. University approval of equipment installed within ten (10) feet from the perimeter of the roof does not relieve the Contractor from the responsibility of complying with Code requirements regarding the provision of appropriate guards at the perimeter of the roof (Currently, section 1013.5 of the 2009 International Building Code).

6. Each air handling unit must be provided with a pre-filter section(s) and final filter section (where required), capable of housing the filters specified in Section 23 41 00. All control dampers (outdoor and return air) shall be provided by the ATC subcontractor. All dampers
shall be fully accessible for lubrication.

7. Units shall have the following construction features:
 a) Reinforced insulated double wall galvanized steel or aluminum panels, with interior perforated steel.
 b) Removable access panels. Access panels in excess of 40 lbs. or 3’x 6” in size shall be hinged, gasketed and provided with non-locking lever type handles.
 c) Filter section access doors shall be hinged.
 d) Drain pans shall be double-wall and constructed of welded stainless steel with 1-inch, 3/4 lb. insulation sandwiched between the pans. Cross break and pitch to threaded drain connections. Provide stacked cooling coils with drip pans and drain connections to main drain pan, main pan to be sized for all drain pan loads. Extend drip pans 3 inches from entering air side of coil face and 6 inches from leaving air side of coil face.
 e) Coil sections shall be provided with tracks extended the full length of unit to provide for the easy removal of all coils.
 f) Fans shall be double width, double inlet centrifugal type fans. The Engineer shall select the most efficient fan available (i.e. airfoil, forward curved, backward inclined).
 g) Low pressure fans shall be used for duties up to 3” of total static pressure. Medium and high pressure fans shall be used for systems with total static pressures between 3” and 6”.
 h) Fan bearings are to be self-aligning, pillow block, re-greasable ball bearings rated for an average life of L10/200,000 Hrs. All units shall be provided with extended lubrication lines to allow lubrication from the exterior of the unit.
 i) Fan shafts and fans shall be rated for continuous operation and shall be statically and dynamically balanced in all planes. Fan drives shall be selected for a 1.2 service factor.

8. All units 5,000 CFM and larger must be provided with a return air fan. The return air fan can be a centrifugal fan set, integral or independent cabinet fan, or axial type fan and must be mounted to permit servicing without the use of a ladder. Units which are not floor mounted and are mounted in excess of six feet above the floor must be provided with stable catwalks constructed of structural grade steel and steel grating. Access ladders shall be integral with the catwalk.

9. Units serving variable air volume systems shall be fitted with variable frequency drive packages as manufactured by ABB, refer to Part 9 under section 23 05 13 for model(s). Inlet vanes, discharge dampers, eddy current drives, etc. are not permitted.

10. All damper motors and actuators shall be located outside of the unit casing. Provide NEMA rated enclosures or NEMA rated actuators for outdoor locations.

11. The Engineer will ascertain that adequate service space exists for the removal of coils, fans, fan shafts etc. without disturbing surrounding equipment.

12. Field erected air handling units must meet the above requirements and shall be constructed in accordance with SMACNA standards. Integral unit fans or independent fan sets may be used.
13. The Engineer will review the noise and vibration levels of the units and provide isolation equipment as required to meet the levels in General Section G “Noise and Vibration Control.”

14. Safety control components such as fire stats, smoke detectors and/or smoke dampers shall be provided per code requirements.

15. Central station units shall be designed to function as a smoke removal system in all buildings required by code to contain such.

16. All doors on air handling units are to open outwards. Manufacturer is to provide necessary door gaskets and handles to create an air tight seal.

23 81 23 Computer-Room Air-Conditioners

1. Mainframe computer rooms shall be equipped with space-mounted down discharge, top return air opening, chilled water units. Where chilled water is not available year-round, air-cooled and glycol units may be required to provide 24/7/365 cooling. The units shall be installed on raised floors and be capable of maintaining space temperature and humidity within 1°F and 2-1/2% RH of set point. The units shall be as manufactured by Liebert with the following components:
 a) 1-inch of 1.5-lb. fiberglass insulation.
 b) 1,750 RPM motors.
 c) Fan bearings designed for a minimum average life of 100,000 hours.
 d) Serviceable filter sections which can be accessed without shutting off unit.
 e) Microprocessor based electronic control system.
 f) Infra-red self-cleaning humidifiers with stainless steel evaporator pans, water safety shut-offs and overflow alarm system.
 g) Automatic start-up after power failure shutdown.
 h) Alarm system to monitor system operating characteristics.

2. Design the air conditioning systems in multiple units such that space temperature and humidity levels can be maintained in the event of the loss of 50% of the available units up to a maximum of three (3) units, whichever is the most stringent.

3. Units are to be integrated into the building’s BAS system. A/E is to coordinate with Liebert representative to provide additional equipment and software as required to provide a fully functional system.

4. Air conditioning unit cooling coil condensate drainage shall be designed for gravity discharge. Where condensate needs to be lifted, use a Little Giant condensate pump and locate the pump outside of room. Provide a duplex outlet for the pump.

23 81 26 Split-System Air-Conditioners

1. Approved manufacturer is Liebert. Mitsubishi, Sanyo and Daikin manufacturers will need to be reviewed and accepted by Facilities prior to design.
2. Air conditioning unit cooling coil condensate drainage shall be designed for gravity discharge. Where condensate needs to be lifted, use a Little Giant condensate pump. Provide a duplex outlet for the pump. If unit is used for an IT closet the pump is required to be outside the room.

3. Provide a wall mounted wireless controller for the air conditioning unit.

4. Condensing units will be sized for ambient air temperature of 95 deg. F. when located on grade and 105 deg. F. when located on roof.

5. Split DX systems that will be operated during ultra-low ambient conditions (<40ºF, i.e. Server rooms or Tele/Data Closets) shall be equipped with both hot gas bypass and head pressure control.
 a) Provide a Liebert DataMate DX for small IT systems.
 b) Provide a Liebert glycol system for large IT systems.

6. Refrigerant piping shall be sized based on the approved manufacturer, routing, load, number of fittings, etc. Contractor shall not base the pipe size solely on the contract drawings.

23 81 46 Water-Source Unitary Heat Pumps

1. Preferred manufacturer and model for water source heat pumps is ClimateMaster, Tranquility 30© Two-Stage Series (horizontal or vertical) or ClimateMaster, Tranquility Modular (TRM) Series (vertical stacked). Deviation from this manufacturer and model requires approval from University Facilities.

2. Coordinate layout and installation of water-source heat pumps and suspension components with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system components, and partition assemblies. All manufacturer-recommended service clearances shall be maintained.

3. Units shall be specified to be furnished with building-standard controls (Andover or Automated Logic) installed at the factory, for large scale projects. Field installation on small scale projects is allowed. Room sensors shall be provided by the building controls manufacturer.

4. Factory-installed safeties shall include:
 a) Antirecycle timer.
 b) High-pressure cutout.
 c) Low-pressure cutout or loss of charge switch.
 d) Internal thermal-overload protection.
 e) Freezestat to stop compressor if water-loop temperature in refrigerant-to-water heat exchanger falls below 35°F (2°C).
 f) Condensate overflow switch to stop compressor with high condensate level in condensate drain pan.
5. Units shall be furnished with manufacturer’s hose kits:
 a) Hose kits shall be designed for minimum 400 psig working pressure, and operating
 temperatures from 33°F to 211°F. Tag hose kits to equipment designations.
 b) Hose length shall be 36 inches. Minimum diameter shall be equal to water-source heat-
 pump connection size.
 c) Isolation Valves: Two-piece bronze-body ball valves with stainless-steel ball and stem
 and galvanized-steel lever handle. Provide valve for supply and return. If balancing
 device is combination shutoff type with memory stop, the isolation valve may be omitted
 on the return.
 d) Provide a wye-type strainer with blow down valve in supply connection.
 e) Balancing Device: Mount in return connection. Include meter ports to allow flow
 measurement with differential pressure gage.
 f) Automatic balancing valve, factory set to operate within 10 percent of design flow rate
 over a 40:1 differential pressure range of 2 to 80 psig.

6. All piping and electrical conduit shall be installed so as to not restrict access for service and
 maintenance purposes.

7. Units shall be provided with manufacturer's standard form in which manufacturer agrees to
 repair or replace components of water-source heat pumps that fail in materials or workmanship
 within five years from date of Substantial Completion. Failures include, but are not limited to,
 refrigeration components.

8. A/E to include the UltraQuiet package option for sound sensitive spaces.

23 82 14 Chilled Beams

1. Chilled beam are prohibited and application requires University Facilities Approval.

2. Deviations from the requirements listed in this section require University Facilities concurrence
 in writing.

3. When chilled beams are used throughout the building or at least most areas, the vapor barrier is
 critical for the building exterior. (If they are used in just limited areas, then the vapor barrier is
 indispensable around those specific areas.)

4. Chilled beams are to be in conformance with manufacturer’s recommendations. Many of the
 selection programs will check the layout to verify that air velocities and expected temperature
 gradients are all within acceptable range.

5. Chilled beams are to be supported from structure with straps, hangers or uni-strut. Support via
 ceiling grid is not applicable.

6. A/E to confirm supply air temperature to active type chilled beams and coordinate with chilled
 beam manufacturers provided in specifications. Some chilled beams have the capability of
 going as low as 55°F, while others require a room temperature of 72°F (neutral air temperature).
7. Static air pressure drop to be below 0.5 inches and noise level below NC 30 (NC 25 is better and normally very achievable with the proper selections) with acoustical testing in accordance with ANSI S12.51.

8. Water pressure drop to be below 10 feet and flow velocities not to exceed 4 fps.

9. Supply air ductwork can be connected in series up to two (2) chilled beams with some manufacturers, three (3) chilled beams with others. A/E to coordinate selections and connections with approved chilled beam manufacturers provided in specifications.

10. Coordinate locations and layout of chilled beams verses heat producing equipment or exhaust hoods if present. Chilled beam layouts shall not compromise light fixture distribution.

11. Supplemental supply air devices, if present, should not blow directly into supply air from the chilled beams.

12. Provide “wing walls” to chilled beams located in areas with exposed structure (no ceiling). Product shall be a manufacturer accessory.

13. Locate returns/exhausts in line with the ends of the chilled beams, if possible.

14. Provide a separate chilled water supply branch to each zone of temperature control, with an automatic valve, strainer, and isolation valve. The return branch should have a circuit setter and isolation valve. Automatic valve shall be integrated with Building Automation System.

15. Water side should always be individual connections for each chilled beam.

16. Each individual chilled beam should have a circuit setter, and branch circuits isolation valves.

17. Automatic controls are to be in place to maintain a chilled water temperature 3°F above dew-point, with mixing valve. A humidity sensor doesn’t need to be installed in all spaces, however, a sampling of typical spaces or at least one of each type of space. The BAS needs to calculate dew point after measuring RH.

18. Reverse return loop is not that critical provided that balancing valves are provided where required.

19. Provide condensation sensors as a backup in case the BAS sequences fail. Sensor by Consense Corp. model CG-ICM-P, or approved equal.

20. When rooftop air handling units provide different summer and winter supply air temperatures, all chilled beams are to be a four (4) pipe configuration.

21. Access to all chilled beam serviceable components (filters, valves, etc.) must be provided.
22. Where chilled beams are located near outside doors and operable windows, they must have condensate drains piped to drain.

23. Approved manufacturers are Trox, Semco, Titus, Price and Dadanco. (Dadanco chilled beams have a higher output capacity than the other manufacturers. Confirm the chilled beam layout based on all approved manufacturers.)

23 82 16 Air Coils

1. This section applies to all DX, chilled water, hot water and steam coils.

2. The design characteristics of the coils shall be as follows:
 a) Maximum face velocity:
 (1) Central air handling unit coils: 500 FPM.
 (2) Duct mounted hot water heating coils: 700 FPM.
 (3) Duct mounted cooling coils: 500 FPM.
 b) Minimum & maximum tube velocity (hot & chilled water): 2 FPS minimum, 8.5 FPS maximum and piping shall be sized to limit pressure drop to 4 ft. w.c. per 100 feet of equivalent pipe.
 c) Maximum water side pressure drop: 15 ft. of water.
 d) Maximum air side pressure drop:
 (1) Central Units:
 (a) Heating coils: 0.50".
 (b) Cooling coils: 1.50" (wet).
 (2) Duct-mounted:
 (a) Heating coils: 0.25".

3. DX coils rated above five (5) tons shall use a thermostatic expansion valve in lieu of capillary tubes or orifices. Below five (5) tons either method is acceptable.

4. Preheat coils, if used, shall be of the steam or hot water type in all applications and are mandatory in all applications resulting in a mixed air temperature below 50°F.

5. All coils shall be installed in a counter flow arrangement. All coils shall be ARI Standard 410 certified, factory tested with air at 325 PSIG and rated for a 250 PSIG operating pressure up to 300°F.

6. Coils shall be constructed of the following materials:
 a) Primary Surface - Tubes - minimum 5/8" OD copper with die formed return bends silver soldered to the tubes. Tubes shall be expanded to form a mechanical bond with the secondary surface fins. Minimum tube thickness to be 0.025” for duct mounted coils and 0.035” for equipment mounted coils.
 b) Secondary Surface - Fins - Die-formed aluminum fins designed to minimize carryover. Fins are to be spaced 10 per inch maximum, maximum fin length to be 10 feet per section and maximum fin height to be 42 inches.
c) Headers: Seamless copper tubing silver soldered to tubes. Connections shall be of red brass with male pipe threads, silver soldered to the headers. Each header shall contain a 1/4" FPT vent and a 1/4" FPT drain tapping. Connection to headers shall be arranged for counter-flow operation supply connections on the bottom and return connections at the top. Provide all water coils with two (2) headers ("Contractor's Coil").

d) Casing: Stainless steel suitable for stacking of coils with end tube sheets to support tubes. All coils with finned lengths 60" or greater shall be provided with intermediate tube supports. Casing channels shall be free draining without depressions which may collect water or contaminants. Steam and hot water coils shall be provided with galvanized steel castings.

e) Maximum continuous rows: 12 rows.

f) DX coils shall be factory dehydrated and sealed prior to shipment.

7. Coil capacity schedules shall be included in the drawings and list the following:
 a) Number of rows and fin spacing.
 b) Entering and leaving conditions (DB & WB in cooling applications).
 c) Airside pressure drop.
 d) Entering and leaving water temperatures.
 e) Water pressure drops.
 f) Airflow in CFM and face velocity.

8. Engineering Professional is to obtain actual facility water temperatures during design. If actual water temperatures cannot be obtained then design water temperature difference shall meet the following minimums:
 a) Chilled water: 12°F.
 b) Hot water: 30°F.

9. All heating and cooling coils will be equipped with inlet and outlet temperature and pressure gauges, drain valve, and vent or vacuum break, as required.

10. During the design phase the A/E will confirm the steam and chilled water coils are installed at an appropriate height to allow for the associated trap.

11. Approved manufacturers per system type:
 a) Steam integral face and bypass heating coils:
 (1) LJ Wing.
 (2) Aerofin.
 (3) Marlo.
 b) Other Coils:
 (1) LJ Wing.
 (2) Aerofin.
 (3) Heatcraft.
 (4) Trane.
23 82 19 Fan Coil Units

1. Basic unit components:
 a) Fan speed controller. Select fans at medium speed.
 b) Unit mounted disconnect.
 c) Tamperproof, positive-locking, quarter turn fasteners at access door for vertical units.
 d) Insulation and adhesive shall have maximum flame spread/fuel contributed/smoke developed rating of 25/50/50 in accordance with ASTM E84.
 e) Drain pan: Plastic or stainless steel, extending full length and width of coil(s); pitch for positive drainage. Coat all sides of pan with fire-retardant, closed-cell foam insulation. Provide pan extension at coil header end of unit.
 f) Filters: One inch thick throw-away type. Coordinate filter pull direction with ductwork and piping.

2. BAS to provide temperature controller, fan speed control switch, outside air sensor, and control valves. Enclosure must be included with sufficient room to mount the BAS controller.

3. Approved manufacturer is Trane (no substitutions). If the Prime Professional determines that a substitution is required due existing conditions, they are to review with the University Project Manager and Facilities Department for approval.

23 82 36 Finned-Tube Radiation Heaters

1. All finned-tube is to be commercial grade, extend wall to wall unless otherwise noted, seamless copper tube permanently bonded to aluminum fins, wall brackets/backplate.

2. Approved manufacturer are Runtal, Sterling, or approved equal.

23 82 39 Unit Heaters

1. Steam and hot water type:
 a) Approved manufacturer are Modine, Sterling, McQuay, and Vulcan.
 b) Casing to be 20 gauge steel with baked enamel finish.
 c) Coil to be a single row, plate or serpentine aluminum fins on copper tubes, factory tested at 150 psi steam.
 d) Motor to be single speed, TEFC type with thermal overload protection, resilient mounted with Class B windings.
 e) Fan to be aluminum blade, steel hub, statically and dynamically balanced.
 f) Guard to be welded steel, zinc plated.
 g) Louvers to be aluminum or steel, individually adjustable type.
 h) Control to be provide integral thermostat to cycle fan.

2. Gas fire type:
 a) Approved manufacturer are Modine, Sterling, McQuay, and Vulcan.
 b) Casing to be 20 gauge steel with baked enamel finish.
c) Heating Element to be vertical flues; cast iron or corrosion resistant steel. Use ribbon type burner of cast iron or alloy.

d) Motor to be single speed, TEFC type with thermal overload protection, resilient mounted with Class B windings.

e) Fan to be aluminum blade, steel hub, statically and dynamically balanced.

f) Guard to be welded steel, zinc plated.

g) Louvers to be aluminum or steel, individually adjustable type.

h) Controls to be factory mounted automatic controls wired to junction box. Features:
 (1) Electric main burner gas valve.
 (2) Pilot safety-control valve arranged for 100 percent safety shutoff.
 (3) High limit temperature control, space thermostat, gas pressure regulator and manual gas shutoff valve.

i) Thermostat mounted 10 inches below unit to cycle fan and burner.

j) A/E is responsible for identifying and documenting what natural gas pressure and pipe main is locally available at the building with PGW. This information shall be used for determining overall equipment load and pipe sizing. No equipment is to be selected below 4.5 in. w.g., which is PGW’s minimum guaranteed system supply.

3. Electric type:
 a) Approved manufacturer are Modine, Qmark, and Brasch.

 b) Fabrication:
 (1) Type to be vertical or horizontal, supported by hanger rods from building structure or with wall bracket and swivel attachment assembly.
 (2) Casing to be formed steel housing.
 (3) Air Flow Design to be draw-through or blow through type.
 (4) Fan to be propeller type, properly secured to motor shaft for direct drive. Statically and dynamically balanced at factory.
 (5) Motor to be single speed, TEFC type with thermal overload protection, shaded pole, permanently lubricated ball bearings requiring no oiling.
 (6) Discharge Louvers to be steel, individually adjustable for air distribution.
 (7) Electric Heating Bank to be clad steel sheathed with aluminum fins.
 (8) Power and Controls to be voltage and phase are to be confirmed with existing conditions or as required for new work.
 (9) Unit heater shall be UL listed and meet NEC requirements.
 (10) Equip unit heaters with control compartment with electric heat contactors and fuse protection.
 (11) Control to be provide integral or remote stat to cycle fan.

23 84 13 Humidifiers

1. Humidifiers shall be of the jacketed dry steam or self-contained steam types. Steam grid, pan, wetted drum, air atomizing and power wetted element humidifiers are prohibited. Infrared pan type humidifiers are allowed in self-contained Computer Room units only.

2. All humidifiers shall use a steam dispersion manifold located in the main duct, branch duct or within the control unit to evenly dispense steam into the air stream. A normally-closed steam
control valve shall be used to control the humidifier output via a space humidity sensor wired in series with a duct-mounted high limit controller. A second blocking steam control valve shall be provided in the steam line entering the humidifier. The valve shall close when the system shuts down and when the outside air conditions do not require humidification.

3. The central steam system may be used as a humidification source and can be directly dispersed into the air stream.

4. All steam humidifiers shall operate with low pressure steam (less than 15 PSI).

5. Free standing space humidifiers are prohibited.

6. Jacketed dry steam shall contain the following components.
 a) Steam jacketed dispersion tube.
 b) Steam separator.
 c) Separating baffle.
 d) Steam trap.
 e) Control valve.
 f) Final steam separator.
 g) Re-evaporation chamber.
 h) Noise attenuator.

7. Self-contained humidifiers shall be of the electrode steam generator type and contain the following:
 a) Disposable cylinders.
 b) Microprocessor controls.
 c) Automatic cylinder fill and drain controls to maintain water conductivity and minimize energy waste. Built-in timers for repetitive drain cycles are prohibited.
 d) Cylinder monitor to discern end of cylinder life.
 e) 16-gauge steel cabinet with hinged and lockable access door.
 f) Fill cup to prevent back-siphonage.

8. Designer shall review the control of all humidifiers to ascertain that system response can meet or exceed expected load variations and maintain desired humidity levels.

9. Minimum winter season humidity levels must be maintained which meet indoor air quality standards.

10. The locations of humidifiers shall generally be restricted to Mechanical Rooms. Applications which require individual humidifiers which discharge vapor into the duct system serving the space must be provided with watertight sheet metal pans piped to the nearest drain.

11. Approved manufacturers are Armstrong, Dri-Steem, and Nortec.

12. A/E shall confirm the steam and condensate piping connections to the Basis of Design manufacturer and model are equivalent to the substituted manufacturers.
13. Humidifiers located in AHU’s shall be sized to cover the entire heating coil section.
XIV. DIVISION 25 – INTEGRATED AUTOMATION

25 00 00 Integrated Automation

1. A/E is to coordinate with University Facilities during design phases to provide a complete Building Automation System (BAS) points list for each piece of equipment, VFD, etc. on the project.

2. A/E is to coordinate with BAS Contractor during all design phases to ensure a complete design and compliance with this Guide.

3. BAS system design and components are to be industry proven and widely accepted practices/equipment.

4. Prime Contractor is required to contract with the BAS Contractor directly. Contracting the BAS Contractor under Division 23 is prohibited.

5. Prime Contractor is to award the BAS contract in the same timeframe as the award of contracts to Divisions 22, 23 and 26, etc.

6. All systems in excess of 7-1/2 tons (packaged and split type included) shall be controlled via a pneumatic/electronic control system interfacing with the existing campus central control systems. DDC control must be supplied by Andover or Automated Logic Controllers.
 a) Andover Controls: The Tri-M Group, LLC (Rob Koenig, 610-444-1002).

7. It is the University’s intent to limit controls system to one type per building. In the case of new buildings or complete removal and upgrade of existing control systems, either Andover or Automated Logic shall be acceptable. In the case of an extension of, or addition to, an existing control system (Andover or Automated Logic), the new components shall be from the same manufacturer of the existing system. Project documentation shall be project-specific and written to avoid any ambiguity regarding which controls manufacturer is acceptable.

8. All new equipment is to be provided with software and hardware necessary for University Facilities to have the ability to troubleshoot and/or configure any field equipment. Equipment manufacturer is to provide software and hardware as part of closeout package.

9. All required sensors and devices are to be included in a BAS building installation for stand-alone controlled operation. The BAS should operate without requiring outside network inputs.

10. The following is a list of prohibited installations:
 a) Refer to part 1.k under Division 23 for additional prohibited items.
 b) BACNet.
 c) Automation or Control System brands other than Andover Controls or Automated Logic.
 d) Campus Ethernet-based interfaces to field equipment (use Modbus RTU or similar direct-wired interface instead).
e) Network interfaces to field equipment utilized for necessary control functions (start/stop, current limit, set points, operating mode, etc. – use hard-wired control points only).

f) Stand-alone controls wear a BAS is available.

g) HVAC paddle-type flow switches (use differential pressure or electronic flow switches).

h) Paddle-wheel (turbine) flow meters.

i) Insertion flow meters (use inline meters only).

j) Air flow measuring devices other than multi-point thermal dispersion or Pitot traverse stations that are selected and installed in compliance with AMCA Standard 203.

k) Chilled beams.

l) Wireless control elements; i.e. valves, dampers, relays, etc.

25 08 00 Commissioning of Integrated Automation

1. The purpose of the commissioning process is to provide the Owner with a high level of assurance that the integrated automation systems have been installed in the prescribed manner, and operate within the required performance guidelines. This process is not intended to take away or reduce the responsibility of the design team or installing contractors to provide a finished product. Commissioning is intended to enhance the quality of system start-up and aid in the orderly transfer of systems for beneficial use by the Owner.

2. The commissioning responsibilities of the Installing Contractor shall include the following:

 a) Review design for provision of power and fire alarm connections to the integrated automation equipment.

 b) Prior to completion of installation, submit “System Verification Checklists” to Engineer of Record and Owner for review.

 c) Verify proper installation and performance of all integrated automation devices provided.

 d) Complete System Verification Checklists and manufacturer’s pre-start checklists prior to scheduling acceptance and operating tests.

 e) Provide an integrated automation system technician to assist during functional performance testing.

 f) Participate in the functional performance tests as required to achieve design intent.

 g) Participate in O&M Training as required by project specifications.

 h) Provide an HVAC and BAS system technician to assist during functional performance testing.

 i) Obtain O&M data on all equipment and assemble in binders as required by the project specifications.

 j) Conduct a maintenance demonstration with hands-on training. Submit record drawings as required by the project specifications prior to the training. Demonstrate proper use, operations and routine maintenance of the elevators and components.

 k) Submit completed System Verification Checklists documenting that the work has been completed in accordance with the plans and specifications and that they are functioning as designed.

 l) Provide written certification documenting that the work has been completed in accordance with the plans and specifications and that they are functioning as designed. Where the work has been sub-contracted, the sub-Trade Representative shall be
responsible for the initial certification with the Integrated Automation Trade Representative re-certifying that he has inspected the work and that it has been completed and functioning as designed. This certification must be submitted prior to the final verification.

m) Provide set of record as-built drawings to the Engineer of Record for inclusion into record documents.

3. Functional Performance Tests:
 a) Each major system will be tested. This will be coordinated and witnessed by the Owner. Witnessing the functional performance tests will serve as a compliment to the O&M Training. No tests will be performed until the system and related subsystems have been started and documented through point-to-point checklists and other documentation.

4. Owner Orientation and Training
 a) The installing contractor shall provide the Owner comprehensive training in the understanding of the systems and operation and maintenance of each major piece of equipment.
 b) The installing contractor or manufacturer’s representative will provide the training. This training should include hands-on operational training. The Owner may choose to videotape this training for future use.
 c) The training shall include start-up, operation in all modes possible, shut-down and any emergency procedures.
 d) The manufacturer's representative shall provide the instructions on each major piece of equipment. These sessions shall use the printed installation, operation and maintenance instruction material included in the O&M manuals and shall include a review of the written O&M installations emphasize safe and proper operating requirements and preventative maintenance. Qualified service engineers employed by the manufacturers or their qualified sales representatives shall do equipment training. The operation and function of the equipment in the system shall be discussed. The start-up and shut-down modes of operation shall be demonstrated. Emergency operations shall be demonstrated.
 e) The Contractor shall attend all sessions and shall add to each session any special information relating to the details of installation of the equipment as it might impact the operation and maintenance.

25 12 00 Integrated Automation Network

1. Air Handling Unit (AHU):
 a) The following hardwired I/O points are required for each AHU. Network interfaces must not be used for the items listed below:
 b) Analog (4 to 20 mA, 0 or 2 to 10 VDC) inputs to the BAS from the AHU:
 i. Filter Differential Pressure (each back of filters – via differential pressure transmitter).
 ii. Outside Air Humidity.
 iii. Outside Air Temperature.
 iv. Outside Air Airflow Station.
v. Mixed Air Temperature.
vi. Return Air CO2.

vii. Return Airflow Station.
viii. Return Air Humidity.
ix. Return Air Temperature.
x. Return Air Fan VFD Feedback (speed).

xi. Supply Airflow Station.

xii. Supply Air Humidity.

xiii. Supply Air Temperature. (Upstream of reheat coil, if required).

xiv. Supply Air Temperature. (Downstream of reheat coil, if required).

xv. Supply Air Static Pressure Sensor.

xvi. Supply Air Fan VFD Feedback (speed).

c) Analog (4 to 20 mA, 0 or 2 to 10 VDC) outputs from the BAS to the AHU:

i. Exhaust Air Damper.
ii. Mixed Air Damper.

iii. Outside Air Damper.

iv. Return Air Fan VFD Speed.

v. Supply Air Fan VFD Speed.

vi. Chilled Water Coil Control Valve.

vii. Heating Hot Water Coil Control Valve.

viii. Heating Reheat Hot Water Coil Control Valve (if required).

ix. Humidifier Control Valve.

d) Digital (contact closure) inputs to the BAS from the AHU:

i. Fire Alarm Return Air Smoke Detector (independent of supply duct detector and general fire alarm – coordinate with fire alarm contractor).

ii. Fire Alarm Supply Air Smoke Detector (independent of return duct detector and general fire alarm – coordinate with fire alarm contractor).

iii. Return Air Fan VFD Alarm/Fault.

iv. Return Air Fan VFD POR.

vi. Supply Air Fan VFD POR.

e) Digital (contact closure) outputs from the BAS to the AHU:

i. Return Air Fan VFD Start/Stop.

ii. Supply Air Fan VFD Start/Stop.

2. Chiller – Air or Water Cooled:

a) The following hardwired I/O points are required for each chiller. Network interfaces must not be used for the items listed below:

b) Analog (4 to 20 mA, 0 or 2 to 10 VDC) inputs to the BAS from the chiller:

i. Running Load Amps, %.

ii. Entering Evaporator Water Temperature.

iii. Leaving Evaporator Water Temperature.

iv. Entering Condenser Water Temperature.

v. Leaving Condenser Water Temperature.

vi. Evaporator Water Flow from Magnetic Flow Meter (if variable flow – one for each chiller).

c) Analog (4 to 20 mA, 0 or 2 to 10 VDC) outputs from the BAS to the chiller:
 i. Current Limit, % (Chiller must respond immediately to reduction in current sent by this output).
 ii. Chilled Water Temperature Setpoint.

d) Digital (contact closure) inputs to the BAS from the chiller:
 i. Chiller Proof of Run.
 ii. Chilled Water Pump Proof of Run (one for each pump – via VFD or current switch).
 iii. Chilled Water Proof of Flow (if constant flow – one for each exchanger on each chiller – via differential pressure transmitter).
 iv. Chiller Isolation Valve Position (one for each valve).
 vii. Condenser Water Pump Proof of Run (one for each pump – via VFD or current switch).
 viii. Condenser Water Proof of Flow (if constant flow – one for each exchanger on each chiller – via differential pressure transmitter).

e) Digital (contact closure) outputs from the BAS to the chiller:
 i. Chiller Start/Stop.
 ii. Chilled Water Pump Start/Stop (one for each pump).
 iii. Condenser Water Pump Start/Stop (one for each pump).

3. Fan Coil Unit (FCU):
 a) The following hardwired I/O points are required for each FCU. Network interfaces must not be used for the items listed below:
 b) Analog (4 to 20 mA, 0 or 2 to 10 VDC) inputs to the BAS from the FCU:
 i. Filter Differential Pressure (each back of filters – via differential pressure transmitter).
 ii. Supply Airflow Station.
 iii. Supply Air Humidity.
 iv. Supply Air Temperature.
 v. Supply Air Static Pressure Sensor.
 vi. Supply Air Fan VFD Feedback (speed).
 c) Analog (4 to 20 mA, 0 or 2 to 10 VDC) outputs from the BAS to the FCU:
 i. Supply Air Fan VFD Speed.
 ii. Chilled Water Coil Control Valve.
 iii. Heating Hot Water Coil Control Valve.
 d) Digital (contact closure) inputs to the BAS from the FCU:
 i. Fire Alarm Supply Air Smoke Detector (independent of general fire alarm – coordinate with fire alarm contractor).
 ii. Fire Alarm Activation (independent of duct detectors – coordinate with fire alarm contractor).
 iii. Supply Air Fan VFD Alarm/Fault.
v. Supply Air Fan VFD POR.
e) Digital (contact closure) outputs from the BAS to the FCU:
i. Supply Air Fan VFD Start/Stop.

4. Pumps:
a) The following hardwired I/O points are required for each pump. Network interfaces must not be used for the items listed below:
b) Analog (4 to 20 mA, 0 or 2 to 10 VDC) inputs to the BAS from the pump:
i. Differential Pressure Transmitter.
ii. Pump VFD Feedback (speed).
c) Analog (4 to 20 mA, 0 or 2 to 10 VDC) outputs from the BAS to the pump:
i. Pump VFD Speed.
d) Digital (contact closure) inputs to the BAS from the pump:
i. Pump VFD Alarm/Fault.
ii. Pump VFD POR.
e) Digital (contact closure) outputs from the BAS to the pump:
i. Pump VFD Start/Stop.
25 35 00 Integrated Automation Instrumentation and Terminal Devices for HVAC

1. A/E is to coordinate with University Facilities to coordinate requirements for, but not limited to the following:
 a) Specify a desired DP for valve sizing or a guideline to exceed the coil DP to avoid valve sizing issues.
 b) Specify close-off requirements.
 c) Specify spring return vs. fail last position.
 d) Specify if electronic fail-safe is OK vs. spring return.
 e) Specify analog (2-10V) vs. tri-state (drive open/drive closed) actuation.

2. Control Valves (manual or automatic) shall be Belimo electronic globe valves for all services, even if they are supplied as part of a pre-manufactured or bundled package.
 a) Two-way, NPT: G2 series with stainless steel trim.
 b) Two-way, Flanged: G6 series with stainless steel trim and Class IV leakage.
 c) Three-way, NPT: G3 series with stainless steel trim.
 d) Three-way, Flanged: G7 series with stainless steel trim and Class IV leakage.

3. Gauge Pressure Transmitters – All Services:
 a) Reference Accuracy: ±0.025% of Span.
 b) Stability: ±0.1% of URL per 10 years.
 c) Power Supply Effects: ±0.005% per Volt (from 21.6 to 32 V DC, 350 Ω).
 d) Output: Two wire 4 to 20 mA DC.
 e) Integrated Indicator (LCD display): 5-digit numeric, 6-digit unit display and bar graph.
 f) Cover Flange & Process Connector: ASTM A351-CF8M.
 g) Capsule: Hastelloy C-276 Diaphragm, 316L Stainless Steel.
 h) Capsule Gasket: 316L Stainless Steel, Teflon-Coated.
 i) Drain/Vent Plug: 316L Stainless Steel.
 j) Bolting: 316L Stainless Steel.
 k) Housing: Cast Aluminum.
 l) Cover O-Ring: Buna-N.
 m) Fill fluid: Silicon.
 n) Field Connection: Provide 2-Valve Stainless Steel Transmitter Manifold.
 o) Manufacturer: Yokogawa.
 q) Alternate Manufacturer: Rosemount.

4. Magnetic Flowmeters – Ice Storage Chilled Water, Chilled Water, and Heating Hot Water Services:
 a) Type: ANSI-Flanged Magnetic Flowmeter with Integral Sensor.
 b) Accuracy: ±0.35% of Rate.
 c) Repeatability: ±0.1% of Rate.
 d) Output: Two wire 4 to 20 mA DC.
e) Integrated Indicator (LCD display): Full dot-matrix LCD.

f) Lining: PFA.

g) Body: Stainless Steel.

h) Flanges: Stainless Steel.

i) Electrodes: Stainless Steel.

j) Grounding Ring: Stainless Steel.

k) Manufacturer: Yokogawa.

l) Model: AXF (size code) G-D2AL1S-(ANSI Flange Code)1-21B.

m) Alternate Manufacturer: Rosemount.

n) Alternate Manufacturer Model: 8723 E ST 2 A1 N0 DA1 M4 Transmitter mounted on an 8705 A SA (Line Size Code) P (ANSI Flange Code) W0 N0 G1 B3 Sensor.

5. Differential Pressure Transmitters – All Services:

a) Reference Accuracy: ±0.025% of Span.

b) Stability: ±0.1% of URL per 10 years.

c) Power Supply Effects: ±0.005% per Volt (from 21.6 to 32 V DC, 350 Ω).

d) Output: Two wire 4 to 20 mA DC.

e) Integrated Indicator (LCD display): 5-digit numeric, 6-digit unit display and bar graph.

f) Cover Flange & Process Connector: ASTM A351-CF8M.

g) Capsule: Hastelloy C-276 Diaphragm, 316L Stainless Steel.

h) Capsule Gasket: 316L Stainless Steel, Teflon-Coated.

i) Drain/Vent Plug: 316L Stainless Steel.

j) Bolting: 316L Stainless Steel.

k) Housing: Cast Aluminum.

l) Cover O-Ring: Buna-N.

m) Fill fluid: Silicone.

n) Field Connection: Provide 3-Valve Stainless Steel Transmitter Manifold.

o) Manufacturer: Yokogawa.

q) Alternate Manufacturer: Rosemount.

6. Airflow measuring stations:

a) Approved manufacturers are Ebtron, Inc. or Air Monitor Corporation (no substitutions).

b) A/E is to design airflow metering equipment in accordance with manufacturer’s installation requirements and placement guidelines.

c) Meter is to be designed for the minimum and maximum air velocities provided by the A/E. The University requires a minimum air velocity of 400 FPM.

d) Ebtron, Inc.:

 (1) Duct and plenum probes: Advantage Gold Series GP1-D sensor density.

e) Air Monitor Corporation:

 (1) Duct mounted configuration: Model Fan-Evaluator (Fan-E) with factory fabricated
transmitter.

7. Gas flow meters:
 a) For gas metering (natural, lab, etc.), require that University be contacted by the design professional with the process/application information to determine the acceptable metering method.

8. Vortex Flowmetering System – High Pressure Steam Service:
 a) General Requirements – Steam Meter Sizing, Selection, and Installation Design:
 (1) Metering shall only be performed at locations where the normal steam operating pressure is greater than 50 PSIG. Metering of low pressure steam is not permitted.
 (2) All saturated steam meters shall be pressure compensated. Where superheat is expected, steam meters shall be pressure and temperature compensated.
 (3) Steam meter sizing shall be performed prior to meter selection.
 (4) In order to correctly size the steam meter, the minimum, maximum, and normal operating flow rates and pressures shall first be determined by the design engineer.
 (5) Using the minimum, maximum, and normal operating flow rates and pressures, as determined by the design engineer, the steam meter vendor shall size the steam flowmeter for maximum turndown.
 (6) The results of the steam meter vendor's sizing shall be utilized by the design engineer to design the physical installation per the steam meter manufacturer's installation instructions, standard drawings, and ANSI/ASME B31.1 Code for Pressure Piping.
 (7) Meter run piping shall be the same pipe size as the nominal meter size. The meter run shall be complete with (at least) the minimum required straight runs of upstream and downstream piping, as indicated on the standard drawings and manufacturer's installation instructions. Reductions and/or enlargements of the piping shall occur before and/or after the meter run.
 (8) Bypasses around steam meters are not required.
 (9) Shedder bars on vortex flowmeters used for steam service shall be installed in the horizontal position when installed in horizontal pipe runs.
 b) Vortex Flowmeter Pipeline Element:
 (1) Type: ANSI-Flanged Vortex Flowmeter.
 (2) Accuracy: ±1.00% of Rate.
 (3) Repeatability: ±0.2% of Rate.
 (4) Output: Two wire 4 to 20 mA DC.
 (5) Integrated Indicator (LCD display): Full dot-matrix LCD.
 (6) Body: Stainless Steel, ASTM CF8M.
 (7) Flanges: Stainless Steel, ASTM CF8M.
 (8) Shedder Bar: Stainless Steel.
 (9) Manufacturer: Yokogawa.
 (10) Model: DY(size code) -DBLBA2-2D /SCT.
 c) Pressure Transmitter:
 (1) Type: High Performance Gauge Pressure Transmitter.
 (2) Accuracy: ±0.55% of Span.
 (3) Stability: ±0.1% of URL for 7 Years.
 (4) Output: Two wire 4 to 20 mA DC.
(5) Integrated Indicator (LCD display): Full dot-matrix LCD.
(6) Body: Stainless Steel, ASTM CF8M.
(7) Flange & Process Connector: Stainless Steel, ASTM CF8M.
(8) Diaphragm: Hastelloy C-276.
(9) Capsule Gasket: Stainless steel, Teflon-coated 316L.
(10) Manufacturer: Yokogawa.

d) Two-Valve Manifold for Pressure Transmitter:
(1) Type: Two-Valve Block & Bleed.
(2) Body: Stainless Steel, ASTM A479-316.
(3) Seat: Carbide Ball.
(4) Stem Seal: Teflon Pressure-Core.
(5) Flange Seal Standard: Taylor Mount Flange Seals.
(6) Manufacturer: Yokogawa.

e) Temperature Sensor & Transmitter (Superheat Applications Only):
(1) Type: High Accuracy Temperature Transmitter.
(2) Accuracy: ±0.05% of Span.
(3) Stability: ±0.1% of URL for 2 Years.
(4) Output: Two wire 4 to 20 mA DC.
(5) Integrated Indicator (LCD display): Full dot-matrix LCD.
(6) Sensor: 100 Ohm Pt RTD.
(7) Sensor Style: Spring Loaded Sensor with Thermowell.
(8) RTD Accuracy: ±0.10% of resistance a 0°C.
(9) Element Lead Configuration: Three Wire Single.
(10) Connection Head: Aluminum, Epoxy Coated.
(11) Extension Type: Nipple-Union-Nipple, 316 Stainless Steel.
(12) Immersion Length: Shall be determined by pipe size.
(13) Thermowell Type: Reduced Tip, Threaded, ¾ in. NPT Process Connection.
(14) Thermowell Material: 316 Stainless Steel.
(15) Manufacturer: Yokogawa/Burns Engineering.

f) Flow Conditioner (For Vortex Flowmeters, 2 inch NPS and larger):
(1) Type: Flanged, Meter Run, 7D.
(2) Body: 316 Stainless Steel.
(3) Flanges: Carbon Steel, ANSI Class 300.
(4) Manufacturer: Vortab Company.
(5) Model: VMR-(pipe size)-3-6 (one required for each steam flowmeter, 2 inch and larger).

g) Flow Computer:
(1) Type: Multi-Function, Field Mount.
(2) Display Type: LCD.
(3) Input Voltage: 85 to 276 VAC.
(4) Manufacturer: Kessler-Ellis Products.
(5) Model: MS-748-L-1-0-V-MB.
25 50 00 Integrated Automation Facility Controls

1. BAS contractor to provide insulation behind all wall mounted thermostats and humidistats.

2. All thermostats and humidistats located in high traffic areas are to have covers to limit damage.

3. A/E and BAS Contractor are to locate thermostats and humidistats in a room such that they are not affected by the following:
 a) Heat producing equipment.
 b) Air from a diffuser blowing directly on it.
 c) Direct sunlight directly on it.
 d) Behind a door and/or furniture.

4. Electrical Contractor and BAS Contractor are to coordinate grounding of BAS equipment.

5. All BAS signal wiring shall be installed in metal conduit (EMT, IMC, or Rigid).

6. All BAS signal wiring shall be installed in separate conduits from AC power wiring (including AC power feeds to fire alarm and BAS devices).

7. All digitally controlled systems will include the necessary hardware to permit remote network connection and programming (modem access at a minimum). Program editing must be able to be performed remotely from any location. Where special software is needed for remote editing, ten copies of the software and licenses are to be provided.

8. Pneumatic devices shall be limited to the following components:
 a) E.P. and P.E. switches and transducers.
 b) Damper and valve actuators.
 c) Pilot positioning devices.
 d) Gauges.
 e) Pressure sensors.

9. All new pneumatic systems shall include duplex compressors each, adequately sized to handle 80% of the anticipated peak load, compressor alternating controls to assure equal run time, a pneumatic tank sized to provide minimum storage capacity of 8 hours in the event of power loss and a mechanical filter dryer system capable of reducing the dew point temperature of the air to +20°F at a pressure of 25 PSIG.

10. All pneumatic tubing shall be run in Type "L" soft or hard copper with soldered joints (95-5 solder). Compression-type connections are permitted at connections to equipment only. Minimum tubing size shall be 1/4-inch (0.030-inch Type L wall thickness).

11. All control valves (chilled, condenser, hot water and steam) shall be of the throttling plug (water) or V-port (steam) repacking type. Valves 2" and smaller shall have threaded brass bodies. Valves above 2" shall be flanged and have iron bodies. All valves shall be provided
with stainless steel stems and metal seats. Refer to part 2 of Section 25 35 00. Plug types as follows:
 a) Steam - Linear characteristic - V-port.
 b) Modulating water service - Equal percentage plug.
 c) Two position - Flat seat/quick opening.

12. All BAS graphics are to show the associated room numbers and equipment (AHUs, VAVs, BAS controllers, etc.) locations. Graphics to include a dynamic link to the primary equipment that serves the terminal unit (i.e. AHU serving the VAV) as well as a link to the schedule for that piece of equipment. Also, include a dynamic link to return to the main building riser or overall campus plan. No “dead ends” allowed.

13. Each project shall provide control panels in the quantities and locations necessary to properly house all control equipment. Panels shall be provided with hinged covers and key operated locks. Top conduit access to panels is prohibited and conduit shall enter panel from side or bottom.

14. A tele/data port will be provided by the University IT for main BAS controller (if a new main controller is required for the project) connection to the campus Ethernet.

15. A/E to coordinate with BAS controls representative and lighting (harvesting) system representative during the design phases for a fully functioning/integrated system.

16. The drawings and specifications shall, as a minimum, include the following:
 a) General system description, sequence of operations, and plans detailing the system architecture, points list, flow diagrams, electrical diagrams, etc.
 b) Shop drawing and submittal requirements.
 (1) System Architecture.
 (2) Instrument Index.
 (3) System Flow Diagrams.
 (4) Electrical Diagrams.
 (5) Sequence of Operations.
 (6) Control Valve Schedules.
 (7) Damper Schedules.
 (8) Point to point wire termination legends are to be provided for all control panels and devices.
 (9) Air Flow Measuring Station Schedules.
 (10) Panel Layout/Diagrams.
 (11) Instrument Compressed Air System.
 (12) User Interface Graphics.
 (13) Symbols, Definition and Abbreviations.
 (14) System Units and Accuracy.
 (15) Special Warranties.
17. The units must be capable of responding to control signals from the BAS and providing status information to the BAS. The BAS will provide the following minimum inputs for each unit.
 a) Occupied/Unoccupied Mode.
 b) Fan Unit Run, supply and return.
 c) Fan speed, supply and return.
 d) Warm-up/Pre-cool.
 e) Heating command, modulation or stages.
 f) Cooling command, modulation or stages.
 g) OA Damper, RA damper, EA damper Position (modulating).
 h) Demand Limit.
 i) Remote Setpoint Adjust.
 j) Emergency response.

18. The BAS must be able to read the following unit information from each unit:
 a) Fan Command/Fan Status.
 b) Fan Speed Command/Status.
 c) Cooling Command/Cooling Status Stages.
 d) Heating Command/Heating Status Stages.
 e) Return Air Temperature and Enthalpy.
 f) Outdoor Air Temperature and Enthalpy.
 g) Supply Air Temperature.
 h) Economizer Command damper command.
 i) Alarm Status: Fire and Freeze.
 j) Duct pressure.
 k) MA temperature.

19. Advanced Pressure Monitor
 a) All Laboratory (animal, chemical, biology, etc.) spaces are to be equipped with a pressure monitor. Monitor is to be located on the wall in the corridor at the entrance into the laboratory space. Positive and negative notification will be as per the Construction drawings and specifications.
 b) Advanced Pressure Monitor:
 (1) Display monitor is to be located outside of laboratory next to entrance door.
 (2) Provide non-network connected pressure monitors as indicated on the drawings complete with pressure pick-up ports for space and reference locations.
 (3) Pressure monitors shall have a 4.3” color TFT touch screen capable of displaying the following information:
 i. Space differential pressure in inches of water column (“WC) or Pascals (Pa) and an optional pressure slide bar in relation to configured alarm set points.
 ii. Intended space pressure relationship (Positive, Negative, Neutral or Standby).
 iii. A four-color, touch selectable, customizable message banner shall display the room condition to staff.
 a. The message banner size shall be selectable between the left-hand 1/3rd of screen or the full screen. When in full screen mode, any alarm condition shall return the message banner to the left-hand 1/3rd size.
b. Selection of different message banners shall also be capable of setting the occupancy state.

c. Upon any alarm condition, the message banner shall turn red and display “Alarm”.

iv. Room ID (user configurable).

v. With the addition of a remote pressure transducer, the pressure monitor shall be capable of monitoring two spaces and toggling the display with all variables listed above between the two spaces.

c) Pressure monitors shall have the following minimum environmental and performance specifications:

1) IP-54 rated housing, resistant to spray washdown.

2) Resistant to decontamination chemicals (e.g. VHP, Clidox, Formaldehyde, sodium hypochlorite 3-6%).

3) Standard accuracy RSS of at least +/-0.5% full scale (non-linearity, hysteresis and non-repeatability).

4) Optional high accuracy RSS of at least +/-0.25% full scale (non-linearity, hysteresis and non-repeatability).

5) Integral zero and span adjustment.

6) Temperature effect on zero/span shift +/-0.03 % FS/°F.

7) Pressure ranges, selected by engineer, shall be up to (+/-0.05" to +/-1.0" WC).

8) Temperature Range: 32 to 120 deg. F

d) Monitor configuration can be copied to an external USB memory device for the purpose of duplicating configuration on like devices.

e) Pressure setpoints shall be externally switchable between positive, negative and neutral modes.

f) Home screen language shall be selectable between English and French.

g) Firmware upgradable via USB port.

h) Alarms:

1) Programmable visual alarm and adjustable audible alarm.

2) Programmable durations for audible alarm delay and silence periods.

3) Alarm on insufficient duct static pressure.

4) Includes (8) optional methods of alarm configuration to minimize nuisance alarms.

i) Inputs:

1) Analog Inputs (AI-1, AI-2):

i. Multi-function input signal of 0-10VAC, 0-5VAC or 4-20 mA.

ii. Used for secondary (remote) pressure transducer input or switching pressure alarm setpoints to equal and opposite ranges.

2) Digital Input (DI-1):

i. DI can be used for door status indication (contact open = door open, closed = door closed) or valve pressure switch indicator.

ii. DI is alarmable; visual on the LCD, yellow on door open.

iii. DI is configurable; door open can disable alarming.

j) Outputs:

1) Analog output (AO-1):

i. A filtered output signal of the primary room pressure differential.

ii. Range is field selectable for 0-5Vdc, 0-10Vdc or 4-20mA.
iii. Speed of response shall be appropriate for high-speed pressure control algorithms with a 100ms speed of response maximum, 3 time constants.

(2) Alarm contact digital output (DO-1):
 i. SPDT, contact rating of 2.0A @ 30VAC/VAC, 0.6A @ 125VAC.
 ii. Adjustable alarm deadband of 0-10% of setpoint.

k) Installation
 i. Pressure monitor shall fit into standard commercially available triple-gang, double-deep electrical boxes (e.g. RACO 697, Appleton M3-350).

l) Acceptable Products.
 i. Phoenix Controls model APM200-ENG-ANU.
XV. DIVISION 26 – ELECTRICAL

26 05 00 Common Work Results for Electrical

1. The A/E shall be responsible for providing a well investigated and designed electrical system. These systems shall conform to NEC, local codes and good electrical practices. It is the A/E’s responsibility to verify both the above and the Department of Facilities Management agreement with the proposed systems.

2. Each system shall be designed and installed in accordance with the latest edition of the applicable Standards, including, but not limited to:
 a) NFPA Standards.
 b) Institute of Electrical and Electronics Engineers (IEEE).
 c) National Electrical Manufacturers Association (NEMA).
 d) Illuminating Engineering Society of North America (IES).
 e) Americans with Disabilities Act Accessibility Guidelines (ADAAG).
 g) Factory Mutual System (FM).
 h) Underwriters Laboratory, Inc. (UL).
 i) American National Standards Institute (ANSI).

3. Increased energy demand caused by new or added equipment shall be listed in all proposals.

4. All equipment is to be individually scheduled.

5. All new equipment is to be provided with software and hardware necessary for University Facilities to have the ability to troubleshoot and/or configure any field equipment. Equipment manufacturer is to provide software and hardware as part of closeout package.

6. General:
 a) Equipment, assemblies and materials may only be specified if they carry Underwriters Laboratories approval.
 b) Incompatibility of materials will not be allowed e.g., aluminum boxes or fittings with steel conduit.
 c) All motors on cooling towers, air handling units and energy recover units in excess of 2,000 CFM, and circulating pumps shall be equipped with variable speed drives equipped with integral electrical bypass or full electromechanical bypasses. Manufacturer shall only be ABB, with appropriate models of ACH550-VCR, ACH550-VDR, ACH550-BDR or ACH550-BCR.
 d) Motor Filter Protection:
 (1) A "dV/dTGuard" or "PWM Output Filter", minimizes motor failures due to Insulated Gate Bipolar Transistor (IGBT) based drives that are connected by long leads. Motors controlled by variable frequency drives that are installed some distances away often fail as a result of high voltage induced insulation breakdown. The extremely fast switching time of the IGBT drive is reflected by the steep edges (dV/dT’s) of the
PWM voltage waveform. When uncontrolled, these high dV/dT’s result in voltage
due wave reflections which can become additive at the pulse level yielding a voltage
overshoot or spikes. This voltage overshoot damage the motor and cable insulation
and lead to motor failure as the length of the motor cables increase. The combined
inductance, capacitance and resistance of the “PWM Output Filter” shall be
specifically designed to reduce voltage waveform dV/dT. In so doing, the “dV/dT
Guard” shall also minimize parasitic resonance interaction between the inductive and
the capacitive elements within the long leads. Left unguarded, this conductor
resonance phenomenon would likewise contribute to the formation of motor-
damaging voltage spikes.

(2) The dampened, low pass filter consists of a gapped, three phase, iron core inductor;
AC-rated, polypropylene capacitors; and wire-wound resistors. The filter shall be
rated for application at a maximum fundamental system frequency of 60 Hz at
nominal system voltages up to 600 V. The filter shall operate at a maximum carrier
frequency of 8 kHz at 40% of fundamental voltage. The ambient temperature of
operation shall be 40°C. The maximum distance from the drive to the input terminals
of the V1k filter shall be 10 feet. The motor filter shall be required for applications
with lead distances between the drive and the motor that range from 50 ft. to 3,000 ft.
and have motors that are greater than 40 HP @ 480 VAC or 20 HP @ 208/230 VAC,
and are installed more than 50 feet away from the VFD. All cooling tower
applications that contain a VFD, regardless of motor size, shall have a “dV/dT Guard”
motor filter.

(3) Enclosure shall be designed to conform to standards NEMA 1 or NEMA 3R if
outdoors. Enclosure shall be constructed from steel with enamel finish. Enclosure
openings shall be provided to allow for air flow convection cooling. Provisions shall
be made to allow for permanent conduit entry sites. Enclosure shall have a removable
cover that shall not at any time disrupt the conduit connections.

(4) The “dV/dT Guard” motor output filter shall be warranted free from defects in both
materials and in workmanship for a period of one year from the date of installation or
for a maximum of two years from the date of purchase, whichever comes first.

(5) Approved Manufacturers are only:
 i) TCI, Trans-coil LLC: Sample part number #V1K80A01.
 ii) MTE Corporation: Sample part number #DVAGB0055.

7. Raceways:
 a) All conduits shall be 3/4-inch (minimum size) rigid galvanized steel or I.M.C., with the
 following exceptions:
 (1) Un-galvanized EMT may be used with insulated bushings and throat fittings in
 interior walls and above false ceilings except in hazardous or corrosive
 applications.
 (2) Flexible metal conduit (MC) may be used for interior light fixtures above
 suspended ceilings and connections to vibrating equipment, such as motors. The
 maximum allowable length is six feet.
 (3) Plastic-covered flexible metal conduit or all-plastic flexible conduit (Sealtite) may
 be used in wet environments with a separate ground wire.
4. PVC conduit shall be acceptable for outdoor underground lighting feeds. PVC conduit will use proper PVC fittings and boxes. Minimum size shall be 3/4".

5. Conduit under slabs or exterior below grade may be Schedule 80 PVC or Schedule 40 encased in 6" of concrete.
 b) UL rigid galvanized conduit must be generally used with threaded couplings only.

8. Conductors:
 a) All conductors shall be THHN copper, 600-volt rated (minimum size #12 for power and #14 for all lighting and control) except where special conditions (high temperatures, gasoline or oil, etc.) require other insulations to be used.
 b) Three-phase color coding, Phase A, B, and C order - 480/277 volt shall be brown, orange, yellow, and 208/120 volt shall be black, red, blue.

9. Grounding:
 a) All conduits and flexible metal conduit shall contain a grounding conductor.
 b) Conduit is not to be used as a grounding conductor.

10. Electrical Boxes:
 a) All boxes shall be pressed galvanized steel or cast. Rigid conduit connections shall be secured in place by double locknuts and insulated bushings.

11. Lighting:
 a) Illumination levels: All areas to be designed in accordance with the Lighting Level stipulated in Section 26 51 00, “Interior Lighting”.
 b) Exterior: Exterior lighting shall be 277 volt except where not available or practical. Preferred walkway lighting to be inductive, fluorescent, metal halide or LED (when approved).
 c) All poles to be style approved in Master Plan or approved equal. Fixtures shall be cut-off type with type V light pattern or type III if wall mounted and a baked poly-gray finish. All other lighting shall be High Pressure Sodium. Roadway fixtures shall be Cobra Head type. All poles shall be one-piece spun aluminum.
 d) Interior: Interior lighting shall be fluorescent and a minimum of 120 volt except for compacts. Acceptable lamps are to be T5s, T8s and LED (when approved). The use of incandescent lamps require prior approval.
 e) Exit/Egress: Exit lights shall be LED with diffused lens and connected into a multi-volt, code-approved source with emergency generator backup. If a generator is not available, the lights shall have a self-contained power pack, charger, and transfer relays.
 f) A/E is to coordinate with University Project Manager and Facilities to limit the variety of light fixtures and lamp types used on a project. Fixtures and lamps should be in accordance with the University’s lighting supplier.
 g) Lights are to be located such that they are easily accessible..

12. Lighting Controls:
 a) All suitable areas, such as offices, classrooms, breakrooms, lunchrooms, conference rooms, etc. shall use occupancy sensors (IR) as required by the 2009 International Energy Conservation Code.
b) A large interior area exposed to constant outside light shall use photocell-controlled contactors with bypass switch or BAS controls.
c) Large interior spaces not suitable for occupancy sensors shall be controlled by low-voltage relays, and tied into the BAS. A low voltage override button shall be mounted and labeled for each lighting control zone.
d) **Light harvesting systems are to be controlled by occupancy sensors.**
e) Dimming systems are not to be specified without prior approval of Project Manager and Facilities Management.
f) Exterior areas shall be controlled by individual and/or master photocell-controlled only by building BAS.
g) Photocells will connect directly to the BAS, where one exists.
h) Exterior lighting shall be connected to the BAS. Prime Contractor is to coordinate with Division 25 and 26 in regards to control equipment (Div. 25) and fixture type (Div. 26) compatibility.
i) **Network lighting control systems are to be approved by Facilities Management.**

13. Wiring Devices:
 a) All receptacles, wall switches, etc. shall be specification grade.
 b) All 208 to 480 volt power devices shall be heavy duty industrial rating.
 c) All devices shall be grey, except those connected to emergency power, which shall be red, or a dedicated circuit, which shall be orange.
 d) All face plates shall be type 302 stainless steel with true beveled edges; mounting screws shall match wall plate finish and be installed with slots vertical.
 e) Identify circuit number on reverse side of faceplate for each outlet box containing branch circuitry.

14. Over-current Protective Devices:
 a) Fuses shall only be used for low voltage control circuits and for motor protection circuits (such as in fused disconnects) in addition to starter overload and short circuit protection.
 b) All fuses shall be rated for the type of service employed.

15. Basic Methods
 a) All electrical systems shall be installed in a workmanlike manner within local and NEC code qualifications subject to the approval of the University Facilities Management.
 b) All conduits shall be supported in accordance with NEC code requirements. Supporting on pipe, ductwork and/or suspended ceiling is not permitted.
 c) Where possible all conduits shall be run overhead. Runs from unit substations to motor control centers may, where necessary, be run in slabs or may run from motor control centers to individual motors and shall be home runs between source and equipment.
 d) Unit substations shall be installed above exterior grade with adequate access from the building, and fresh air exchanges rated at 1.5 times that of the total room volume of the sub-station with manual damper control for fresh air intake to sub-station.
 e) Where used in slabs, conduit fitting to Sealtite connections shall be watertight.
 f) Direct burial of underground cable is not allowed. All cables will be run through duct banks or conduits. This includes communication, power, and control cables.
g) Special attention shall be given to conduit installation methods in mechanical rooms where water or live steam leakage could cause flooding. In these areas conduit runs shall be overhead.

h) All motors shall be installed such that the motor box is accessible to maintenance personnel.

i) A pad eye shall be provided over motors where necessary for removal.

j) All high voltage splicing shall be done by qualified splicers, in accordance with manufactures recommendations for splicing and terminations and in accordance with the current NEC.

k) All conduits for telephone or communications shall be home runs from panel to instrument or device.

l) Conduits entering panels with any kind of electronic equipment inside shall enter from the bottom or side of the panel.

m) Grounding continuity shall be maintained across building expansion joints where necessary.

n) Cable and conduit shall enter electrical panel from side or bottom, top access is prohibited.

o) Conduits entering the building horizontally from below grade should enter a pull box that is not located above electrical equipment, to allow the conduit to be drained.

16. Emergency, Standby and Optional Standby Power systems are to be designed in accordance with Articles 700, 701 and 702 of the National Electric Code, version as adopted by the City of Philadelphia.

26 05 53 Identification for Electrical Systems

1. All electrical equipment shall be required to be labeled to comply with OSHA and ANSI/ASME A13.1-2007 standards for the identification of systems.

2. The marking system shall identify the voltage of the contents.

3. All equipment must be identified using phenolic nameplates and labeled in accordance with the nomenclature used on the drawings and compatible with the MIMS System.

4. All electrical panels installed or entered must have type written updated directories indicating specific circuits and locations. Outlet circuits must be identified with room number locations, lighting circuits must be identified with room number locations, and powered device locations must be included in directory.

26 08 00 Commissioning of Electrical Systems

1. The purpose of the commissioning process is to provide the Owner with a high level of assurance that the electrical systems have been installed in the prescribed manner, and operate within the required performance guidelines. This process is not intended to take away or reduce the responsibility of the design team or installing contractors to provide a finished product. Commissioning is intended to enhance the quality of system start-up and aid in the orderly
transfer of systems for beneficial use by the Owner.

2. The electrical components that shall be included in the commissioning process include, but shall not be limited to, the following:
 a) Labeling of Circuits and Connected Equipment.
 b) Main Switchboard Overcurrent Protection Performance.
 c) Panelboard Installation and Branch Circuit Labeling.
 d) Distribution Transformer Performance.
 e) Motor Controllers Compliance.
 f) Grounding System Performance.
 g) Interior Lighting System Performance.

3. The commissioning responsibilities of the Installing Contractor shall include the following:
 a) Review design for provision of power to the appropriate HVAC equipment.
 (1) Verify proper hardware specifications exist for performance as defined by the Contract Documents.
 (2) Verify proper safeties and interlocks are included in the design of electrical connections for HVAC equipment.
 b) Prior to completion of installation, submit “System Verification Checklists” to Engineer of Record and Owner for review.
 c) Verify proper installation and performance of all electrical system components provided.
 d) Complete System Verification Checklists and manufacturer’s pre-start checklists prior to scheduling acceptance and operating tests
 e) Provide an electrical system technician to assist during functional performance testing.
 f) Participate in the functional performance tests as required to achieve design intent.
 g) Participate in O&M Training as required by project specifications.
 h) Obtain O&M data on all equipment and assemble in binders as required by the project specifications.
 i) Conduct a maintenance demonstration with hands-on training. Submit record drawings as required by the project specifications prior to the training. Demonstrate proper use, operations and routine maintenance of the elevators and components.
 j) Submit completed System Verification Checklists documenting that the work has been completed in accordance with the plans and specifications and that they are functioning as designed.
 k) Provide written certification documenting that the work has been completed in accordance with the plans and specifications and that they are functioning as designed. Where the work has been sub-contracted, the sub-Trade Representative shall be responsible for the initial certification with the Electrical Trade Representative re-certifying that he has inspected the work and that it has been completed and functioning as designed. This certification must be submitted prior to the final verification.
 l) Provide set of record as-built drawings to the Engineer of Record for inclusion into record documents.
4. Start-Up:
 a) The installing contractor shall perform start-up of the electrical equipment. The appropriate contractors and/or manufacturer’s representative shall be on-site to perform start-up. No system will be started until the manufacturer’s checklists have been completed. Start-up will be performed according to the manufacturer’s recommended procedures. The Owner will visit the site to review completeness of installation in conjunction with progress meetings prior to starting equipment.
 b) Contractors involved in installation, fabrication, manufacturer, control, or designs of equipment shall be present at the time of start-up. A factory-authorized technician shall be on site to start equipment when required by the specifications. This will minimize delays in bringing equipment on line and expedite acceptable functional performance.

5. Functional Performance Tests:
 a) Each major system will be tested. A random sample of each subsystem will be tested. The Functional Performance Tests shall be performed in the presence of the Owner and shall serve as a compliment to the O&M Training. No tests will be performed until the system and related subsystems have been started, the testing and balancing report has been submitted and reviewed, and the completion of the control system has been documented through point-to-point checklists and other documentation.
 b) The Functional Performance Tests shall include the following, with the Commissioning Agent (if applicable) and/or Owner present:
 (1) The electrical trade representative, with the CA present, shall field test for correct labeling of circuits and equipment by breaking current and observing loss of power at circuits or equipment. An “Incorrect Equipment Circuit Identification” report will be prepared by the electrical trade representative and submit to the Owner.
 (2) The electrical trade representative shall demonstrate: main power disconnect switch and feeder disconnect switches overcurrent and ground fault sensor trip settings by the primary injection method and in accordance with NETA-ATS Section 7.6, switchboard assemblies megger tested in accordance with NETA-ATC Section 7, switchboard metering instrumentation tests in accordance with NETA-ATC Sections 7.10 and 7.11, and switchboard single-phase monitor tests for operation upon loss of a phase voltage.
 (3) The electrical trade representative shall field test for correct labeling panelboards and branch circuits, including grounding continuity of up to 10% of all circuits in each panel, by breaking current and observing loss of power. An “Incorrect Branch Circuit Wiring” report will be prepared by the electrical trade representative and submit to the Owner.
 (4) The electrical trade representative shall demonstrate: distribution transformer performance voltage and current measurements in accordance with NETA recommendations, grounding conductor impedance to the building structure measured between two points other than the location of the grounding conductor connections, and ventilation clearance from transformer enclosures to partitions in accordance contract documents requirements.
(5) Motor controllers shall be demonstrated by the electrical trade representative for compliance with prevailing codes and the contract documents.

(6) Grounding System Performance tests shall be performed by the electrical trade representative in accordance with NETA-ATS Section 7.13.

(7) The electrical trade representative shall demonstrate: luminaire/lamp combinations by inspection, operational tests for lighting control/dimming systems, illumination level measurements in up to 20% of the building area, and interior lighting control performance, including operation of occupancy sensors, automatic time controls, energy management control override timers, manual dimming control, multi-level switching, and other specified lighting controls. The electrical trade representative shall submit an “Incorrect Light Lamping” report to the Owner.

6. Owner Orientation and Training
 a) The installing contractor shall provide the Owner comprehensive training in the understanding of the systems and operation and maintenance of each major piece of equipment.
 b) The installing contractor or manufacturer’s representative will provide the training. This training should include hands-on operational training. The Owner may choose to videotape this training for future use.
 c) The training shall include start-up, operation in all modes possible, shut-down and any emergency procedures.
 d) The training shall include a review of all systems using simplified system schematics including riser diagrams, valve locations, and equipment locations.
 e) The installing contractor shall provide the Owner with copies of all inspections and acceptance.
 f) The manufacturer's representative shall provide the instructions on each major piece of equipment. These sessions shall use the printed installation, operation and maintenance instruction material included in the O&M manuals and shall include a review of the written O&M installations emphasize safe and proper operating requirements and preventative maintenance. Qualified service engineers employed by the manufacturers or their qualified sales representatives shall do equipment training. The operation and function of the equipment in the system shall be discussed. The start-up and shut-down modes of operation shall be demonstrated. Emergency operations shall be demonstrated.
 g) The Contractor shall attend all sessions and shall add to each session any special information relating to the details of installation of the equipment as it might impact the operation and maintenance.
 h) The installing contractor shall assist in the coordination of yearly testing, calibrating, and servicing as specified in the contract documents.
 i) The Control Trade Representative shall attend all sessions and be prepared to conduct the controls portion of the training as it relates to each equipment section.
 j) The Control Trade Representative shall conduct the training session on the controls system hardware and software.
 k) The Electrical Trade Representatives shall conduct sessions on their respective trades with emphasis on any peculiarities of the systems and maintenance requirements.
26 09 23 Lighting Control Devices

2. Each area enclosed by ceiling height partitions shall have at least one accessible lighting control to independently control lighting within the area.

3. All enclosed areas larger than 500 square feet shall have an accessible lighting control so that general lighting may be reduced by at least one half throughout the area.

4. The total number of accessible lighting controls within an enclosed area shall not be less than one for each 500 square feet, exceptions being made, on case by case basis, for large spaces used as a whole, spaces served by automatic or programmable lighting controls, and controls for security or safety.

5. The use of infrared occupancy sensors shall be investigated for all restrooms, classrooms, offices, breakrooms, lunchrooms, conference rooms, and other areas of intermittent use.

6. Occupancy Sensor – Wall Switch:
 a) Wall mounted motion sensor using passive infrared to detect moving personnel (minimum 300 square foot coverage for desktop activity). When motion is detected lights switch ON; if no motion is detected after a pre-selected (adjustable) duration, lights automatically switch OFF. Selectable automatic or manual control mode, integrated light level sensor, adjustable intensity (0 to 200 foot candles), light level and time delay switches, and compatible with electronic ballasts.
 b) Rating: 0-800 watts at 120V; 0-1200 watts at 277V. UL listed, CBSC Title 24.
 c) Basis of design is Watt Stopper “WS-250”, or approved equal.
 d) Provide five (5) year product warranty.

7. Occupancy Sensor – Ceiling:
 a) Ceiling mounted 360 degree motion sensor using passive infrared to detect moving personnel. When motion is detected lights switch ON; if no motion is detected after a pre-selected (adjustable) duration, lights automatically switch OFF. Selectable automatic or manual control mode, integrated light level sensor, adjustable intensity (4 to 190 foot candles), light level and time delay switches, and compatible with electronic ballasts.
 b) Rating: 1 Amp at 24 VDC. UL listed, CBSC Title 24.
 c) Basis of design is Watt Stopper “CI-200”, or approved equal.
 d) Provide five (5) year product warranty.

8. Prime Professional to coordinate HVAC system and occupancy sensor control through BAS system.
26 10 00 Medium-Voltage Electrical Distribution

1. During the design stages Facilities Management Department will be consulted as to the choice of primary supply voltage, its location and the available capacity.

2. The primary voltage available on campus is 13.2 kV underground services provided by PECO Energy.

3. Unit Substations:
 a) Outdoor transformers shall be oil or non-PCB dielectric fluid filled.
 b) Outdoor, medium-voltage, pad-mounted, oil-filled transformers shall also be copper-wound, “K”-rated, and rated for 95 kV BIL.
 c) Indoor transformers shall be dry type equipped with fans. Temperature indicator and alarm devices shall be provided. Alarm device shall also de-energize main primary and secondary breaker circuit by means of a shunt trip device.
 d) Indoor, medium-voltage, unit substation transformers shall be “K”-rated, copper-wound, air-cooled or cast coil-type, rated for 95 kV BIL.
 e) All transformers shall have proper indicating gauges and shall include amperage, voltage, and phase.
 f) Primary switches shall be fused load break switches sized for system short circuit current. Provision should be made for spare fuse link storage in switch. Three (3) spare fuses shall be provided with each primary disconnect switch. Switch design is subject to the approval of the University’s Project Manager and University Facilities Management.
 g) Switchgear shall be provided with barriers to allow maintenance on sections. Where applicable, lifting devices for removal of draw out type circuit breakers shall be provided.
 h) Primary switch and secondary breaker shall be key interlocked. Other key interlocking schemes shall be covered under the Specifications.
 i) Liquid-filled transformers shall be provided with a containment area capable of holding the full volume in the unit, and include alarm on floor of containment area connected to the BAS to provide alarm in case of failure.
 j) All power transmission designs shall provide for dual service. There will thus be dual feeders, dual busses and a normally open tie-breaker.
 k) Where designated by the University an automatic switching sequence shall be provided between the incoming circuit breakers and the normally open tie breakers.
 l) Relaying shall be provided on power transmission equipment. This should include instantaneous and time over-current per phase, differential protection across transformers and instantaneous ground protection.
 m) A pulse type watt hour demand meter labeled with KWH, volt, amp, and power factor and other pertinent information shall be provided for each circuit so that it can be connected to and monitored by the University’s Building Automation System.
 (1) Each unit substation shall be equipped with an electronic power monitoring device, on the low-voltage side of the transformer, capable of displaying individual phase voltages and amperages, three-phase power factor, kWh totalization and kW demand for a fixed, 30-minute window.
 (2) The power monitor shall also provide a KYZ pulse initiator output of kWh.
(3) Basis of design: Cutler Hammer, IQ DP-4130.

n) Electrical substations will be designed and constructed to operate at 0.95 lagging power factor or better at all times.

o) All unit substation rooms shall be ventilated at 1.5 times the total room volume with manual damper control for fresh air to the substation.

p) Distribution cable will be Kerite with 0.5 mil copper shielding and rated at 15KV for either 15KV or 2.4KV service. Building services shall always be minimum 4/0 cable.

4. Service Entrances and distribution panel:
 a) Secondary main breaker will be key-interlocked with primary switch.
 b) Main and feeder breakers shall be equipped with ground fault protection. Over-current protection shall also be provided with coordination curves supplied by the A/E on breakers 1200 amps and larger.
 c) A pulse type watt hour demand meter labeled with KWH, volt, amp, and power factor and other pertinent information shall be provided for each distribution feeder so that it can be connected to and monitored by the University’s Building Automation System.
 (1) Each unit substation shall be equipped with an electronic power monitoring device, on the low-voltage side of the transformer, capable of displaying individual phase voltages and amperages, three-phase power factor, kWh totalization and kW demand for a fixed, 30-minute window.
 (2) The power monitor shall also provide a KYZ pulse initiator output of kWh.
 (3) Basis of design: Cutler Hammer, IQ DP-4130.
 d) Circuit breakers shall be provided for secondary feeder circuits. Breaker size shall be coordinated with the main distribution breaker.
 e) All secondary distribution panels shall contain complete panel schedules with room or equipment designation fed by each breaker.
 f) All motor power supplies shall contain a fused disconnect switch for visible break circuit opening and be provided with a combination starter in accordance with NEMA standards.
 g) One-third spare capacity shall be included in all designs.

5. Grounding System:
 a) Drawings shall show grounding systems. Details of the grounding system shall also be provided as opposed to a reference to the NEC only.
 b) Normal service ground may be the street side of the cold water main service valve and made grounds shall be as required. Multiple ground wires shall be used as necessary to provide ground system reliability.
 c) A separate ground conductor in each circuit shall be required.
 d) Sizing of ground conductors shall be in accordance with NEC specifications.
 e) Equipment grounds shall be wired to an un-insulated ground bus. Panel neutral bars may not be used for this grounding.
 f) Normal service ground for substations shall be driven earth ground rods with bare copper conductors.

6. Feeder Circuits:
 a) Designs shall allow for 30% increase in loading over original sizing.
b) Feeder ratings shall not be so large that coordination of relays cannot be obtained due to high percentage load on mains.

c) All feeders must be in rigid conduit (not EMT) or in feeder enclosed bus.

7. Branch Circuits:
 a) Voltage drop must be taken into account in design. Home runs of 75 feet or more will necessitate an increase of a minimum of one wire size.
 b) Six duplex receptacles shall be the maximum on any 20 AMP branch circuit.
 c) Branch circuit panels shall be limited to 42 poles. Circuits shall be protected by thermal magnetic molded case circuit breakers. Fully one-third of these panels shall be spare capacity.
 d) Circuit breakers shall be a minimum of 20 AMP, with bolted bus connections.
 e) Individual loads other than receptacle or lighting breakers shall be individually sized to match the loading.

26 32 13 Engine Generators

1. Approved natural gas engine generator manufacturers are Caterpillar Power Systems, Cummins Power Systems, and MTU Onsite Energy. Generator basis of design is to be natural gas type, diesel is only allowed if natural gas is not available.

2. Approved automatic transfer switch manufacturers are ASCO 7000 Series, Cummins OTEC, and GE ZT Series.

3. Generators used for Emergency, Standby and Optional Standby Power systems are to be designed in accordance with Articles 700, 701 and 702 of the National Electric Code, version as adopted by the City of Philadelphia.

4. When additional emergency circuits need to be added to the existing generator, it is the A/E firm’s responsibility for coordinating the new and existing loads with the University Project Manager and Facilities Department to determine if the existing generator has the capacity.

5. Electrical distribution systems shall be designed under the dual feeder concept such that equal ampacity is available from each source.

6. Automatic transfer systems shall be provided in conjunction with these dual feeder systems such that minimum outage time is encountered. Certain locations may be deemed to require only manual transfer systems. These systems will be so specified by the University during system planning stages. All automatic transfer systems shall operate on a low voltage relay. Systems will also be provided with manual reset trip and lockout relay.

7. Emergency generators will be provided in new locations. These units shall normally be automatic starting diesel engine driven with fume detector. The generator horsepower rating shall be less than 1,000 Hp. Documentation of connected load shall be identified as actual load connected and generator sized for 50% over connected load for future loading.
8. An emergency panel board will be provided to service exit lighting, minimum building lighting needed for evacuation, fire, building alarm systems, telephones and relay to central control system. University areas and certain laboratories shall also be connected to emergency systems where specified.

9. Emergency system wiring shall be in separate conduits.

10. Emergency lighting switches shall not be located in normal lighting panels.

11. Elevator sump pumps shall be included in the emergency power systems. In certain buildings some lab equipment, HVAC equipment (boiler, one heating hot water pump), and various panels (BAS and security card access) shall be designated to be on emergency power.

12. A minimum of six (6) 20-Amp emergency circuits are to be provided to each floor to outlets designated as emergency. The outlets will be located in designated areas on each floor as directed by University Facilities Management.

13. Telecommunications and Data Closet requires the installation of three (3) 20-Amp dedicated 120 volt quad outlets with dedicated #10 wire, neutrals and grounds on Emergency Power. Dedicated cooling for IT equipment to be on Emergency Power.

14. Contractor shall refer to Section III of the City of Philadelphia Department of Public Health Air Pollution Control Board – Air Management Regulation XV, Control of Emissions form Emergency Generators and Fire Pumps, in regards to generator operation to determine if operation is during ozone season.

15. Engine exhaust discharge point to be a cap type with birdscreen. Lid type is prohibited due to high wind velocities.

16. Transfer switch is to be capable of having its’ exerciser disabled and being able to be programmed to meet the timing requirements of NFPA 110.

17. A/E is to design an exterior connection point for a temporary emergency generator hookup.

18. Drexel Facilities does not require a preset schedule on emergency generators or ATS equipment. Running and testing is manual as per Facilities set calendar.

26 41 00 Facility Lightning Protection

1. Each building shall be considered individually as to the necessity for lightning protection as it may fall within the cone of protection provided by other structures. If such an installation is deemed necessary an Underwriter Label Master System shall be specified.

2. Steel frame buildings shall be provided with a low resistance grounding system whether or not lightning protection is provided.
3. 13.2KV lightning arresters shall be rated for 15KV. 2.4 KV lightning arresters shall be rated for 5KV.

26 51 00 Interior Lighting

1. The interior lighting design for new buildings shall be in accordance with the requirements and limitations of the 2009 International Energy Conservation Code. The following values are extrapolated from Table 505.5.2, which stipulates allowable power density allowances by building type:
 a) Atrium..........................0.6 W/sf.
 b) Cafeteria Dining..............1.4 W/sf.
 c) Classrooms......................1.2 W/sf.
 d) Dormitory.......................1.0 W/sf.
 e) Exercise Center1.0 W/sf.
 f) Gymnasium.....................1.1 W/sf.
 g) Healthcare-clinic............1.0 W/sf.
 h) Library..........................1.3 W/sf.
 i) Museum..........................1.1 W/sf.
 j) Office...........................1.0 W/sf.
 k) Parking Garage...............0.3 W/sf.
 l) Performing Arts Theater1.6 W/sf.
 m) Police Station...............1.0 W/sf.
 n) Religious Building..........1.3 W/sf.
 o) Restrooms.....................0.9 W/sf.
 p) Retail.........................1.5 W/sf.

2. The overall lighting power density for the building must be specified in plans, and only under exceptional circumstances will variances allowing a higher level be permitted.

3. Illuminance Levels:
 a) Foot-candle levels for specific areas shall be provided in specifications.
 b) The following levels are recommended ranges:
 (2) Rest Rooms, Lounges..20-30 foot-candles.
 (3) Classrooms, Lecture Halls, Offices, Laboratories......40-50 foot-candles.
 c) Task lighting shall be used where necessary to increase specific area illuminance levels or where it can be used to reduce ambient illuminance level requirements.
 d) The illuminance levels specified shall be maintained in accordance with the power budget limit outlined below.

26 51 13 Interior Lighting Fixtures, Lamps, and Ballasts

1. Interior Lighting Fixtures:
 a) Fixtures used for general interior lighting applications must have a coefficient of utilization (CU) no less than the following:
 (1) Fluorescent: 0.60.
(2) Incandescent: 0.75.

b) The use of specular reflectors and parabolic louvers shall be investigated.
 (1) CU at Room Cavity Ratio = 1.0.
 (2) Ceiling cavity reflectance = 80%.
 (3) Wall reflectance = 50%.
 (4) Floor cavity reflectance = 20%.

c) Polarized lenses shall be considered instead of indirect lighting for use in areas where the reduction of glare on computer screens is of concern.

2. Lamps:
 a) Lamps used for general lighting applications must have an efficacy of no less than the lumens per watt specified below:
 (1) Fluorescent: 77 lumens/watt.
 (2) Incandescent: $8 + (0.06 \times \text{lamp wattage})$ lumens/watt.
 b) Standard lighting shall be of the fluorescent type at 277 or 208 volts. Incandescent lighting may only be used with prior approval, and is not encouraged.
 c) The use of straight two-foot fluorescent lamps is discouraged, U tube lamps or longer lamps are preferred.

3. Ballasts:
 a) Electronic or hybrid electronic ballasts shall be used instead of core-coil ballasts. In buildings where the quality of the power supply is of critical concern, electronic ballasts shall be specified. Ballasts shall be of the multi-voltage type (120-277 volts).

26 53 00 Exit Signs

1. Internally-illuminated exit signs shall not exceed 5 Watts per side.

2. Exit signs to be on emergency lighting panel. A/E to verify with University Facilities for approval to use battery backup.

26 56 00 Exterior Lighting

1. The exterior lighting design for new buildings shall be in accordance with the requirements and limitations of the 2009 International Energy Conservation Code.

2. Sufficient area lighting shall be provided to provide safe transit under all conditions.

3. Exterior lighting shall be 277 volt except where prohibited by building voltage availability.

4. Exterior lighting fixtures shall be watertight, insect proof, and designed for the most efficient beam spread for the area.

5. Mercury vapor lamps shall not be used, metal halide, and high-pressure sodium lamps shall be considered.
6. All penetrations into these fixtures will be sealed to prevent water infiltration.

7. Exterior lighting shall be automatically controlled by photocell-controlled contactors rated for the connected load with bypass switch or BAS.
XVI. DIVISION 27 – COMMUNICATIONS

27 05 28 Pathways for Communication Systems

1. This Section pertains to installation of electrical boxes, conduit, raceway, floor poke-throughs, cable trays, ground bus and miscellaneous accessories for telecommunications and data cable. Refer to Appendix B for typical room layout, manufacturer’s data and installation guide for specified products, and conduit rider diagram example.

2. The following systems are prohibited from being installed in or through telecommunication and data rooms:
 a) Ductwork.
 b) Domestic water, drainage, and hydronic piping.
 c) Fire protection sprinkler piping.

3. Design of telecommunications pathways, closets, conduit, cable trays, risers etc. will be coordinated with the University’s Project Manager and the University’s IT Project Manager. Cable tray locations will be marked up on contract drawings by the University’s IT Project Manager, to be implemented in final Construction Documents by A/E.

 a) Typical Telecommunication Room shall be provided in the Basement or on lowest floor of the building with the following:
 (1) Minimum inside dimensions of the telecommunication and data room is 96 inches wide and 120 inches deep.
 (2) Provide a swing out door with storage function lock, door closer and latch guard.
 (3) Communications room should be outfitted with 3/4 in fire rated plywood on all walls from 6 inches above finish floor to a height 8 foot 6 inch.
 (4) One (1) convenience outlet and lighting for the space.
 (5) Three (3) 20-Amp dedicated 120 volt quad outlets with dedicated #10 wire, neutrals and grounds on Emergency Power.
 (6) Provide year round cooling for equipment (heat loads to be provided by IRT). Equipment to be on Emergency Power.
 (a) Provide a Liebert DataMate DX for small IT systems.
 (b) Provide a Liebert glycol system for large IT systems.
 (7) Provide for a minimum of two (2) 4 inch EMT conduits between this room and the suspended ceiling of each floor above (total of two per floor). Total number of conduits to be coordinated with the University’s IT Project Manager based on cable load.

5. The installing contractor shall be responsible for the installation of electrical boxes, conduit, raceway, floor poke-throughs, cable tray, and miscellaneous accessories. Cable installation and termination of equipment shall be the responsibility of University.
6. Non-acceptable Products:
 a) Conductor-less flexible armored sheathing ("Greenfield") shall not be permitted for use in installation of telecommunications and data cable pathways.

7. Required Products:
 a) Boxes:
 (1) Recessed mount telecommunications and data outlet box: 4 inches square by 2.125 inch deep galvanized steel box.
 (2) Surface mounted telecommunications and data outlet box: single-gang, deep steel box; Mulberry #30589 (no substitution).
 (3) Recessed mount CATV outlet box: 4 inches square by 2.125 inches deep galvanized steel box.
 (4) Surface mounted CATV outlet box: two-gang, deep steel box; Mulberry #30599 (no substitution).
 b) Covers:
 (1) Recessed mount telecommunications and data outlet box: 4 inches square trim ring with center single device opening.
 (2) Recessed mount CATV outlet box: 4 inches square trim ring with dual device opening.
 (3) Surface mounted outlet box covers shall be provided and installed by others.
 c) Other Materials:
 (1) All recessed and surface mounted boxes shall be furnished with a single length of 1 inch diameter EMT fixed to the top of the box (typical) and extending a minimum of 6 inches above the nearest accessible ceiling level.
 (2) Both open ends of the EMT shall be furnished with a 1 inch diameter set screw connector and threaded plastic bushing.
 (3) Each length of EMT shall be furnished with a pull string extending at least 18-inches beyond each open end of EMT.
 (4) EMT serving wireless units shall be routed from outlet box to nearest accessible ceiling.
 d) Raceway:
 (2) Provide a single channel NEMA device plate (Wiremold, Model DS4047C-DG) for each data locations.
 e) Floor Poke-throughs:
 (1) Floor poke-throughs shall be Legrand Wiremold Model 8AT. For the IRT data portion, IRT will need one of the three center sections (not the middle one) with the 8DEC mounting plate. Also, an 8DIV divider plate will need to be installed between the data compartment and the other two center compartments which should be used for AV. An 1125CHA Bottom housing assembly to attach the conduit pathway for the IT cabling. http://www.legrand.us/wiremold/poke-thru-devices/recessed-poke-thru-
devices/evolution-8at-poke-thru-device/8at.aspx#res.

f) Ground Bus:
 (1) Acceptable manufacturer is Storm Copper Components, Co. or approved equal.
 (2) Copper ground bar with multiple holes, UL recognized standoff insulators, stainless steel mounting brackets, stainless steel assembly bolts and lock washers.
 (3) Size: 0.25 inch thick by 4 inch tall by 24 to 40 inch length.

g) Cabletray:
 (1) Basis of Design to be Cablofil.
 (a) Color for cabletray and accessories to be EZ.
 (b) Part numbers for cabletray and associated accessories:
 (i) CF 105 300: 4 inch deep by 12 inch wide basket tray.
 (ii) EDRN: Splice Fast Splice.
 (iii) SWK: Splice Washer Kit.
 (iv) AS: Trapeze Hang Clip.
 (v) Cable Dropout.
 (2) Acceptable substitute to be Copper B-Line.
 (a) Color of cabletray and accessories to be Gray.
 (b) Part numbers for cabletray and associated accessories:
 (i) FT4X12X10: 4.38 inch deep by 12 inch wide basket tray.
 (ii) FTSTLC: Splice Fast Splice.
 (iii) SPL KIT: Splice Washer Kit.
 (iv) SUPT2: Trapeze Hang Clip.
 (v) 90 Degree Kit: Cabletray elbow.
 (vi) Cable Dropout.

8. Installation: For recessed boxes, both the box and trim ring shall be mounted directly behind the rear face of gypsum wall board panels.
 a) Install trim rings prior to the application of gypsum wall board.
 b) Only the trim ring opening shall be seen or shall slightly protrude into the gypsum wallboard cut opening, but not beyond the front face.

27 40 00 Audio-Video Communications

1. University Instructional Media Services (IMS) installs A/V system components in all classrooms located in Main, Randell, Curtis Hall, Paul Peck Problems Solving and Research, Hagerty Library and some classrooms in the LeBow College of Business.

2. An outside Contractor is responsible for installing A/V system components in all rooms located in Papadakis Integrated Sciences Building, One Drexel Plaza (Garden Level) and LeBow College of Business.

3. Basic A/V system components specifications for each classroom can be found on the IMS website at http://www.drexel.edu/ims/. Select “Classroom Information” and then choose the room to view the equipment.
4. The Standard Audio/Visual Package for Classrooms consists of the following:
 a) Projector: Epson 1710C or 1715C. (Used majority of the time but could be changed out.)
 b) Projector Mount: Manufacturer is Bretford, mounting pole BRETPM UN14.
 (1) Ceiling at 13 ft.: Provide an adjustable Bretford pole, which is attached directly to
 the ceiling. The projector is required to hang down even with the top of the screen.
 In small classrooms, the screens are usually 6 ft. wide and mounted at a height of
 about 7 ft. to 8 ft. from the floor. Screen surface is matte white. Provide an A/C
 120 VAC outlet box (via bx cable) to a location near the projector.
 (2) Ceiling at 7 ft. to 8 ft.: Adjustable pole is not required. Provide a Bretford 24" x
 12" plate in the ceiling (where a tile would go), to which we attach a short Bretford
 projector mount (fixed at 12" in length), and then attach the projector to that.
 Provide an A/C 120 VAC outlet box in the standard cutout in the ceiling plate.
 c) Projector powered with 120 VAC Outlet located in ceiling near projector mount.
 d) Speakers: TIC-ASP-120B Architectural Series 120 WATT with wall mounts at front of
 the classroom typical.

And contained in a freestanding rack (front of the room):
 a) Sony FM Stereo Receiver STR-DE 197: 120 VAC.
 b) Sony DVD/VHS player SLV-D370P: 120 VAC.
 c) Rack powered with 120 VAC outlet located in wall near rack, location at front of the
 classroom typical.
 d) Rack will contain connections for amplifier, DVD player, and laptop. Amps and DVD’s
 vary greatly. Amps are usually 100 watts.

NOTE: Video and control cables and speaker wire will be routed through plastic, surface-
mounted plastic hinged raceway, color white, in installations in existing rooms. Cables and
speaker wire are often partially hidden behind drop ceilings.
XVII. DIVISION 28 – ELECTRONIC SAFETY AND SECURITY

28 10 00 Electronic Access Control and Intrusion Detection

Incorporate, by reference, Divisions 8 and 26 into Division 28.

1. General
 a) Notice of Confidentiality:
 (1) Security system design plans, specifications, and other documentary material are
 confidential information and shall remain the secure and confidential. Drawings,
 manuals, and programming notes shall be provided to the system owner upon
 completion of the project and shall not be left in system enclosures.
 b) Purpose:
 (1) Establish design criteria, define activities, identify stakeholders and assign
 responsibilities as they relate to the installation of electronic access control, intrusion
 detection systems, and CCTV for University buildings and campuses.
 c) Overview:
 (1) The electronic safety and security systems for University’s buildings and facilities
 are managed and maintained by the University Public Safety Operations department.
 The primary function of these security systems is to protect the campus population
 and assets. The Drexel Public Safety Department (DPS) will monitor and respond to
 all approved security alarms that are a part of the campus security system.
 d) Electronic Security Supported at University:
 (1) Card Access Control. This system (Software House CCure) replaces typical
 mechanical key controlled door locks with a door locking system that uses an access
 card (Dragon Card) as the access credential.
 (2) Emergency Delay Exit Door. The emergency delay exit door system operates as a
 fire code compliant emergency exit door but will not open until a fifteen (15) second
 delay period has expired after an exit attempt has been initiated. Local siren sounds
 immediately to alert local staff of attempt to exit and police receive message with
 location and specific alarm information. A local fire alarm triggers the immediate
 release of the door(s). Local controls or programmable time schedules can be used to
 override this security function. Typical installations include back or side code
 required exits to labs, exterior building emergency exit doors and stairwell doors.
 These systems may also be used with card readers in interior egress applications;
 however, these interior applications should be provided on a limited basis only to
 secure areas accessed through egress doors.
 (3) Intrusion Detection System. This system monitors offices, classrooms, etc. for
 unauthorized entrance or intruders. This system can consist of motion sensors, door
 status sensors, glass break sensors and one or more control keypads. The keypad is
 used to arm/disarm system by entering a numeric code on the keypad. Alarm signals
 are transmitted to DPS with location and specific alarm information.
 (4) Asset Protection System. This system is designed to monitor various computer
 equipment, projectors, lab equipment etc. for unauthorized removal.
(5) Duress Button. These buttons, also known as panic buttons, are installed in locations where potential personal safety or security threats exist. Depressing the button sends a silent priority alarm signal to DPS with location and specific alarm information. The panic button is usually located in the knee space underneath a desk or service counter. Once activated the alarm must be reset by DPS.

(6) Police Help Call Box. The typical system is a distinct blue box or pole with a red call button, “Emergency” signage and a blue locator lamp. Depressing the call button puts the individual in direct voice contact with a DPS dispatcher along with specific location information. These can be interior or exterior installations.

(7) Security Closet Design: One (1) 20-Amp duplex receptacle on emergency power, one (1) tele-data outlet, one (1) light fixture at a minimum, and one (1) 3/4 inch rated plywood on one (1) wall from 6 inches above finish floor to a height 8 foot 6 inch. Air conditioning is not required unless otherwise specified.

(a) All wiring in closet shall be individually labeled within panels or enclosures and within 12” of all field terminations. All wiring shall be labeled alike on both ends. Labels shall be computer generated and fastened to wiring with transparent heat shrink material. Hand written labels are not acceptable.

(b) All keys to enclosures shall be turned over to University Public Safety upon completion of the project. Keys shall not be left in panel lock or on top of secured panel.

e) Quality Assurance:

(1) Only approved security contractors may perform work on University systems. The University is presently entered into a contract agreement with Tyco Integrated Systems (Tyco IS) as the sole source provider for security system service and installations.

(2) Tyco IS shall work directly for University for all projects.

2. Products

a) General:

(1) All products and components must be new and approved by University prior to installation.

b) Building Access Control System (BACS):

(1) System Description:

(a) All electronic access controlled doors shall comply with current jurisdictional Fire code or University Life Safety guidelines, whichever is more stringent.

(b) All wiring shall be individually be labeled within all panels or enclosures and within 12” of all field terminations. All Cables shall be labeled alike on both ends. All labels shall be computer generated and fastened to conductors with transparent heat shrink material. Hand written labels shall not be acceptable.

(c) Provide Software House I-star panels, HID SE Series readers and alarm input and output devices connected to the DPS CCure security management system.

(i) All keys to enclosures shall be turned over to system owner upon completion of project. Keys shall not be left on top of or otherwise secured to panel boxes.
(d) Card Reader Controlled Doors:
 (i) Card Reader controlled doors shall include:
 (a) Card Reader.
 (b) Magnetic position switches for each door leaf.
 (c) Request to exit device (integrated preferred).
 (d) Software House RM-4 Reader Module in enclosure.
 (ii) Emergency Exit Doors shall include:
 (a) Magnetic position switches for each door leaf.
 (b) Local audible sounder.

(e) Proximity Card Readers:
 (i) Wall Mount and Special Function: HID SE SERIES (NO EXCEPTIONS).
 (ii) Mullion Mount: HID SE SERIES (NO EXCEPTIONS).
 (iii) Card Reader / Keypad: HID SE SERIES (NO EXCEPTIONS).

(f) Request to Exit
 (i) Doors equipped with electrified locksets or panic (crash) bars shall have integrated REX switches.
 (ii) REX motion sensors shall only be used when integrated REX is not feasible.

(g) Door Position Switches:
 (i) Concealed Magnetic Door Position Switch: Provide Sentrol 1078 series or approved equivalent.
 (ii) Surface Mount Door and Hatch: Provide Sentrol 2500 Series or approved equivalent.
 (iii) Overhead Door Position Switch: Provide Sentrol 2300 Series or approved equivalent.
 (iv) Provide armored cable from surface mount and overhead switches to the associated junction box to secure and conceal the wire.

(h) Delayed Egress Device Controller:
 (i) Von Duprin Series 98-99 with CX (Chexit) accessory pack.
 (ii) Delayed egress magnetic locks may only be used with approval from University Public Safety.

(i) Electric Locking Mechanisms:
 (i) Magnetic locks may not be utilized without prior written approval from University Public Safety.
 (ii) Stanley “Preferred” Branded electronic panic devices shall not be used. (NO EXCEPTIONS).
 (iii) DPS preferred electronic lock manufacturers:
 (a) Electrified Exit Device:
 (i) Von Duprin (Ingersoll Rand).
 (ii) Corbin Russwin (Assa Abloy).
 (iii) Sargent (Assa Abloy)
 (b) Electric Strikes:
 (i) Von Duprin (Series to be specified depending upon application).
 (ii) HES (Assa Abloy) (Series to be specified depending upon application).
(2) Intrusion Detection:
 (a) Motion Detection:
 (i) Provide dual technology (microwave and infrared) to prevent false alarms. Specific model depends on application and mounting requirements.
 (ii) One motion detector per zone, do not wire in series.
 (b) Glass Break Detector:
 (i) Sentrol Shatter Pro II or equivalent.
 (ii) If different model is approved. A compatible glass break tester for the device being installed must be provided.
 (c) Duress Buttons:
 (i) USP HUB momentary hold up series.
 (ii) Duress button locations must be reviewed and approved by DPS.
 (iii) Provide 20 foot service loop in ceiling when mounting to non-fixed furniture.
 (d) Call Boxes:
 (i) All call boxes shall be equipped with constantly lit blue light and a flashing blue light when activated.
 (a) All call towers shall be equipped with CCTV armature.
 (iii) Wall Mount Station: Talk-A-Phone WEBS-WM.
 (iv) Flush or Vestibule mount: VOIP-500.
 (e) Closed Circuit Television:
 (i) Mounting locations a field of view will be specified by DPS.
 (ii) Fixed Cameras: Indigo Vision IP (Model to be specified depending upon application).
 (iii) Pan Tilt Zoom (PTZ) Indigo Vision IP (Model to be specified depending upon application).
 (iv) CCTV Settings:
 (a) Resolution: 2SIF.
 (b) Bit Rate:
 (i) Fixed Camera: 512mbs.
 (ii) PTZ Camera: 1024mbs.
 (c) Frame Rate: 7-10ips.
 (d) Rate Control: ACF-Filter.

28 31 00 Fire Detection and Alarm

1. The following is a list of prohibited installations and require University approval for their installation:
 a) Fire alarm system brands other than Notifier or Fire Control Instruments (FCI).

2. Fire alarm systems shall be addressable, by FCI or Notifier.

3. All fire alarm systems shall be connected to the Campus Security Office utilizing a Silent Knight 5104B Digital Communicator equipped with a Silent Knight Model 5230 Remote
Annunciator mounted on the communicator enclosure.

4. Programmable fire alarms shall be provided with all documentation, instructions, hardware and software keys to permit owner programming.

5. Fire alarm panels shall be provided with spare devices and panel cards as required by the Owner.

6. All terminals in panels and devices shall be identified, by connecting wire, wire color and number.

7. All fire alarm pull stations shall be metal.

8. Cable and conduit shall enter fire alarm panel from side or bottom. Top entry is **prohibited**.

9. All fire alarm system power-limited signal wiring shall be installed in metal conduit.
 a) All exposed metal conduit to be EMT, IMC, or Rigid.
 b) All concealed metal conduit to be MC, EMT, IMC, or Rigid.

10. All fire alarm system power-limited signal wiring shall be installed in separate conduits from AC power wiring (including AC power feeds to fire alarm and BAS devices).

11. All closets/rooms containing heat generating fire alarm equipment (NAC panel) are to be ventilated.

12. **Contractor is to provide the following:**
 a) Label all field devices, i.e. detectors and modules, with a printed device address.
 b) Printed instructions on how to disable and reset the different sections of the fire alarm system.
 c) Function buttons in the panel for:
 (1) Disable horns.
 (2) Disable strobes.
 (3) Disable elevator recall (primary).
 (4) Disable elevator recall (alternate).

13. Conduit compression connectors and couplings are to be insulated steel.

14. Digitally addressable combination smoke and carbon monoxide detectors are required outside the entry of every sleeping quarters in residential housing and fraternities. Detectors and locations are to be in compliance with the 2013 Act 121, Carbon Monoxide Alarm Standards Act - Enactment, as adopted by the Commonwealth of Pennsylvania.

15. **A/E is responsible for designing the fire alarm system for all new construction and renovation projects. The Contractor is only responsible for designing the fire alarm system when the contract is based on a Design Build agreement.**
XVIII. DIVISION 32 – EXTERIOR IMPROVEMENTS

32 84 00 Planting Irrigation

1. The University has developed a centralized irrigation system which links every controller for all buildings via the Internet, enabling the University to control each system from a central location.

2. All new buildings, additions, or system additions shall be integrated into the new system.

3. All irrigation heads, valves, and controllers shall be Rain Bird brand.

4. Heads and valves will vary depending on the installation, but the controller shall be Rain Bird ESP-LX Modular Series or the next upgraded/updated controller as outlined by University Facilities prior to installation.

5. All irrigation installations, modifications and upgrades must be reviewed with and approved by University Facilities before implementing.

6. As built drawings must be supplied for all irrigation work performed at the University
XIX. DIVISION 33 – UTILITIES

33 05 00 Common Work Results for Utilities

1. Prime Professional to specify clean lump free sand for refill around buried trenches, conduits, pipes, etc. Sand to be 12 inches all around. Sand from job site is **prohibited**.

2. Trench should have a caution ribbon between the fill sand and finish covering above each pipe.

3. University and Prime Professional to witness pressure test before covering. Pressure test is to be repeated after finish covering trench.
XX. DIVISION 41 – MATERIAL PROCESSING AND HANDLING EQUIPMENT

41 22 00 Cranes and Hoists

1. Prime Contractor shall provide a site plan showing the location of the crane, delivery trucks, etc. for review and coordination by the University. Upon review the University will request a meeting with the Prime Contractor, crane operator, and University Staff, Police, Public Safety to walk through the logistics of the plan.

2. Prime Contractor is not to perform any crane picks prior to coordinating with the University.
XXI. APPENDIX A

Laboratory Design Standard 2013
INTRODUCTION

Purpose

Drexel University and Drexel University College of Medicine has a continuing need to modernize and update its facilities. The resulting construction projects often have significant health and safety requirements due to regulatory oversight. Since these requirements can impact the design of a project, the Drexel University Department of Environmental Health and Safety (EH&S) has prepared this Laboratory Design Standard to aid the campus community with planning and design issues. EH&S believes that this Standard, in conjunction with EH&S’s plan review and consultation, improves design efficiency and minimizes changes.

Application

The Laboratory Design Standard is a resource document for use by faculty, staff, and design professionals for use during the planning and early design stages of a project. The Standard applies to construction and renovation projects for all Drexel University and Drexel University college of Medicine facilities, including leased properties.

The Designer must be mindful that laboratory design is a highly specialized field. A successful design requires adequate research, programmatic development and due diligence. Codes and guidelines referred to in this (or any other) section of the Building Systems Standards and Design Guide are not to be assumed comprehensive. It is the responsibility of the Designer to properly investigate the specific requirements of the lab to ensure compliance with all local, state, and national codes and regulations.

Format of Guide

The Laboratory Design Standard is formatted to address laboratory design issues pertinent to General Laboratories in Section 1. Within the sections, specific design criteria are provided.

References

References include regulations (e.g. Fire Code, OSHA, etc.), consensus standards (e.g. ANSI/ASHRAE), and good practices. Good practices stem from industry standards and/or the knowledge and judgment of Drexel University’s EH&S professionals.
Limitations of the Guide

The Drexel Laboratory Design Standard is not “all inclusive.” It does not cover regulatory issues nor does it cover all design situations. It is important to note that use practices must be considered during the design process, as they can directly influence how the laboratory will be designed (e.g., how hazardous materials are used impacts how they are stored, which is a design issue). In all cases, EH&S should be consulted on questions regarding health, safety, and environment.
Section 1.0: General Requirements for Drexel University Laboratories

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Scope</td>
<td>5</td>
</tr>
<tr>
<td>B. Building Requirements</td>
<td>5</td>
</tr>
<tr>
<td>C. Building Design Issues</td>
<td>6</td>
</tr>
<tr>
<td>D. Laboratory Design Issues</td>
<td>7</td>
</tr>
<tr>
<td>E. Mechanical Considerations</td>
<td>13</td>
</tr>
</tbody>
</table>
A. Scope

The primary objective in laboratory design standard is to provide a safe environment for laboratory personnel to conduct their work. A secondary objective is to allow for the maximum flexibility for safe research use. Undergraduate teaching laboratories require other specific design considerations. Therefore, all health and safety hazards must be anticipated and carefully evaluated so that protective measures can be incorporated into the design. No matter how well designed a laboratory is, improper usage of its facilities will always defeat the engineered safety features. Proper education of the facility users is essential.

The general requirements listed in this section illustrate some of the basic health and safety elements to include in all new and remodeled laboratories at Drexel University and Drexel University College of Medicine facilities, and leased properties. Variations from these guidelines need approval from Drexel Environmental Health and Safety (EH&S). The subsections of Section 1.0 provide specific guidance on additional critical features of a general laboratory (e.g. fume hoods, hazardous materials storage, and compressed gases.)

B. Building Requirements

1. Designer Qualifications- The designer must have the appropriate professional license in his/her area of expertise.

2. Building Occupancy Classification – Occupancy classification is to be based upon an assessment of a projected chemical inventory of the building. The classification must be reviewed by EH&S and Fire and Life Safety.

3. Environmental Permits – Project managers must consult with Drexel Environmental Health and Safety to identify permitting and pollution abatement engineering requirements for the building. This should be done well before key resource allocation decisions are made.

4. Any building, or portions thereof, in which hazardous materials are stored, shall be constructed in accordance with the City of Philadelphia’s Building Codes.

C. Building Design Issues

1. Provide separate office spaces for laboratory employees. The research personnel writing areas must be located outside the laboratory.

2. Public access to laboratory personnel in office rooms with separate corridor access is highly desirable.
D. Laboratory Design Considerations

1. The laboratory shall be completely separated from outside areas (i.e., must be bound by four walls). The writing areas for research personnel must be located outside the laboratory environment.

2. The laboratory shall have means of securing specifically regulated materials such as DEA (Drug Enforcement Administration) controlled substances and CDC (Center for Diseases Control) select agents and radioactive materials (i.e., lockable doors, lockable cabinets, etc.).

3. Each door from the hallway into a laboratory must have a view panel and be at least 36 inches wide.

4. If the laboratory has windows that open, they must be fitted with insect screens.

5. The floor must be non-pervious, one piece, and with covings to the wall. This can be achieved by use of glue, heat welded vinyl flooring, epoxy coated concrete slab, etc. Flooring for offices within the laboratory shall not be carpeted.

6. Floors in storage areas for hazardous materials shall be of liquid tight construction.

7. Floor drains shall be prohibited in laboratories and hazardous material storage areas, unless approved by EH&S.

8. Each laboratory must contain a sink for hand washing.

9. Laboratory sinks shall have lips that protect sink drains from spills.

10. Chemical storage shelves shall not be placed above laboratory sinks.

11. Sufficient space or facilities (e.g., storage cabinets with partitions) shall be provided so that incompatible materials can be physically separated and stored. This will be based on the chemical inventory and use projection provided by the Principal Investigator to the project manager and the Department of Environmental Health and Safety. If the project scope cannot provide sufficient storage the user must develop a written management control plan to include as part of their local Chemical Hygiene Plan.

12. All furniture must be sturdy and non-porous. Fabric covered chairs are strictly prohibited. All work surfaces (e.g., bench tops and counters) must be impervious to the chemicals used. The counter top should incorporate a lip to help prevent run-off onto the floor.
13. Vented cabinets with electrical receptacles and sound insulation should be provided for the placement of individual vacuum pumps, where their use is anticipated. A one- to two-inch hole for the vacuum line hose from the cabinet to the bench top should be provided.

14. The lab shall have a minimum aisle clearance of at least 24 inches. Main aisles used for emergency egress must have a clearance width of at least 36 inches.

15. A pathway clearance of 36 inches must be maintained at the face of the access/exit door.

16. Designated storage space should be provided for lab carts. Location must not reduce width of corridors or aisles to less than code-required widths. Lab carts should be secured when not in use.

17. Furniture design should comply with basic ergonomic specifications referenced by OSHA.

18. Laboratory shelving should NOT be installed at heights and distances which require workers to reach 30 centimeters above shoulder height and extend arms greater than 30 centimeters while holding objects 16 kg or less when standing on the floor or on a 12” step stool.

19. The space between adjacent workstations and laboratory benches should be 5 ft or greater to provide ease of access. In a teaching laboratory, the desired spacing is 6 ft. Bench spacing shall be considered and included in specifications and plans.

20. The laboratory doors shall be automatically self-closing. Such self-closing doors are to be able to be opened with a minimum of effort as to allow access and egress for physically challenged individuals.

21. Doors in D-H-occupancy laboratories shall have doors which swing in the direction of egress. Doors serving B-occupancy shall swing in the direction of egress if the occupant load is 50 or more. Where possible, all B-occupancy lab doors should swing out.

22. Laboratory areas shall be provided adequate natural or artificial illumination to ensure sufficient visibility for operational safety. Lighting must be even across the room, with a maintained light level for work surfaces in accordance with IES standards.

23. All laboratories and hazardous material storage rooms must have at least one light not controlled by an occupancy sensor. This light must be on an
emergency circuit. The occupancy sensors are to be wired so that it can be bypassed with a conventional light switch.

24. Laboratories with lasers and/or high voltage equipment must have an emergency power-off switch installed near the laboratory exit.

25. Laboratories with lasers must have a “Laser In Use” at the entrances to the laboratory. The sign must be connected to a light switch inside the laboratory.

26. The laboratory shall be designed so that it can be easily cleaned. Bench tops must be a seamless one-piece design to prevent contamination. Laminate bench tops are not suitable. Penetrations for electrical, plumbing, and other considerations must be completely and permanently sealed. If the bench abuts a wall, it must be coved or have a backsplash against the wall. Walls should be painted with washable, hard non-porous paints.

27. Spaces between benches, cabinets, and equipment must be accessible for cleaning and allow for servicing of equipment.

E. Mechanical Considerations

1. GFCI protection shall be provided to electrical receptacles.

2. The lab should be fitted with an adequate number of electrical outlets, which can accommodate electrical current requirements with an additional 20-40% capacity.

3. Electrical panels should be located outside the lab, but not in rated corridors. Electrical panels must be installed to maintain 36 inches of clearance in all directions.

1. An emergency shutoff valve for natural gas must be installed outside the lab adjacent to the laboratory entrance door.

2. Flexible connections should be used for connecting gas and other plumbed utilities to any freestanding device, including but not limited to biosafety cabinets, incubators, and liquid nitrogen freezers. Flexible connections should be appropriate for the pressure requirements and should be constructed of material compatible with the transport gas. A shutoff valve should be located within sight of the connection and clearly marked.
Section 1.1: VENTILATION

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Scope</td>
<td>3</td>
</tr>
<tr>
<td>B. General Ventilation Considerations</td>
<td>3</td>
</tr>
<tr>
<td>C. Negative Pressurization</td>
<td>6</td>
</tr>
<tr>
<td>D. Supply Air Arrangements</td>
<td>6</td>
</tr>
<tr>
<td>E. Biological Safety Cabinet and Fume Hood Location</td>
<td>7</td>
</tr>
<tr>
<td>F. Approved Equipment</td>
<td>8</td>
</tr>
<tr>
<td>G. Fume hood and Local Exhaust Ventilation Selection/Types</td>
<td>9</td>
</tr>
<tr>
<td>1.0 General : Factors to Consider when Selecting a Fume Hood</td>
<td></td>
</tr>
<tr>
<td>2.0 Constant Volume Hoods</td>
<td></td>
</tr>
<tr>
<td>3.0 Variable Air Volume (VAV) Fume Hoods</td>
<td></td>
</tr>
<tr>
<td>4.0 Supply or Auxiliary Air Hoods</td>
<td></td>
</tr>
<tr>
<td>5.0 Ductless Fume Hoods</td>
<td></td>
</tr>
<tr>
<td>6.0 Perchloric/Hot Acid Hoods</td>
<td></td>
</tr>
<tr>
<td>7.0 Radioactive Material Use</td>
<td></td>
</tr>
<tr>
<td>8.0 American with Disabilities Act (ADA) Hoods</td>
<td></td>
</tr>
<tr>
<td>9.0 Glove Boxes</td>
<td></td>
</tr>
<tr>
<td>10.0 Walk-in Fume Hoods</td>
<td></td>
</tr>
<tr>
<td>11.0 Special Purpose Hoods</td>
<td></td>
</tr>
<tr>
<td>H. Labeling</td>
<td>14</td>
</tr>
<tr>
<td>I. Construction, Installation, & Performance</td>
<td>14</td>
</tr>
<tr>
<td>J. Power and Electrical</td>
<td>17</td>
</tr>
<tr>
<td>K. Sashes</td>
<td>18</td>
</tr>
<tr>
<td>L. Ducting</td>
<td>19</td>
</tr>
<tr>
<td>M. Exhaust</td>
<td>20</td>
</tr>
</tbody>
</table>
N. Noise

O. Specialty, Controlled Climate, and Cold Rooms

P. Lab Hood Commissioning
A. Scope

The requirements of this Standard apply to all Drexel University and Drexel University College of Medicine facilities, and leased properties.

B. General Ventilation Considerations

1. The room should have mechanically generated supply air and exhaust air. All lab rooms shall be exhausted 100% to the outside. There shall be no return of fume hood and laboratory exhaust back into the building.

2. Mechanical climate control should be provided.

3. Cabinetry or other structures or equipment must not block or reduce effectiveness of supply or exhaust air.

4. Laboratories shall have a minimum of eight (8) to ten (10) air changes/hour during occupied times and 6 air changes/hour during unoccupied times. The control to determine occupied versus unoccupied must be determine by occupancy sensors not time. Variations to this requirement may be necessary due to the type of research work in the laboratory. Variances must be approved by the EH&S office.

5. Laboratories must be maintained under negative pressure in relation to the corridor or other less hazardous areas. Clean rooms and tissue culture rooms requiring positive pressure must have entry vestibules provided with door-closing mechanisms so that both doors are not open at the same time.

6. Where appropriate, general ventilation systems should be designed, such that, in the event of an accident, they can be shut down.

7. The air velocity volume in each duct should be sufficient to prevent condensation or liquid or condensable solids on the walls of the ducts.

8. Fume hoods shall not be the sole means of room air exhaust. General room exhaust outlets shall be provided where necessary to maintain minimum air change rates and temperature control.

9. Operable windows are prohibited in new lab buildings and shall not be used on modifications to existing buildings.

10. Local exhaust ventilation (e.g., “snorkels” or “elephant trunks”), other than fume hoods, shall be designed to adequately control exposures to hazardous chemicals. An exhausted manifold or manifolds with connections to local exhaust may be provided as needed to collect potentially hazardous exhausts from gas chromatographs, vacuum pumps, excimer lasers, or other...
equipment which can produce potentially hazardous air pollutants. The contaminant source needs to be enclosed as much as possible, consistent with operational needs, to maximize control effectiveness and minimize air handling difficulties and costs.

11. Hoods shall be labeled to show which fan or ventilation systems are connected to it.

12. No laboratory ventilation system ductwork shall be internally insulated. Sounds baffles or external acoustical insulation at the source should be used for noise control.

13. Air exhausted from laboratory work areas shall not pass un-ducted through other areas.

C. Negative Pressurization

1. Airflow shall be from low hazard to high hazard areas.

2. An adequate supply of makeup air (90% of exhaust) should be provided to the lab.

3. An air lock or vestibule may be necessary in certain high-hazard laboratories to minimize the volume of supply air required for negative pressurization control. These doors should be provided with interlocks so that both doors cannot open at the same time.

4. A corridor should not be used as a plenum.

D. Supply Air Arrangements

1. Room air currents at the fume hood shall not exceed 20% of the average face velocity to ensure fume hood containment.

2. Make-up air should be introduced at opposite end of the laboratory room from the fume hood(s) and flow paths for room HVAC systems shall be kept away from hood locations, to the extent practical.

3. Make-up air shall be introduced in such a way that negative pressurization is maintained in all laboratory spaces and does not create a disruptive air pattern.

4. Cabinetry or other structures or equipment should not block or reduce effectiveness of supply or exhaust air.
5. Supply system air should meet the technical requirements of the laboratory work and the requirements of the latest version of ASHRAE, Standard 62, Ventilation for Acceptable Indoor Air Quality.

E. Biological Safety Cabinet and Fume Hood Location

1. Fume hoods and Biological Safety Cabinets shall be located away from activities or facilities, which produce air currents or turbulence. Locate away from high traffic areas, air supply diffusers, doors, and operable windows.

2. Fume hoods should not be located adjacent to a single means of access to an exit. Recommend that hoods be located more than 10 feet from any door or doorway.

3. Fume hood openings should not be located opposite workstations where personnel will spend much of their working day, such as desks or microscope benches.

F. Fume Hood and Local Exhaust Ventilation Selection/Types

1. **Constant Volume (CV) Hoods** - These hoods permit a stable air balance between the ventilation systems and exhaust by incorporating a bypass feature. If bypass is 100% this allows a constant volume of air to be exhausted through the hood regardless of sash position.

2. **Variable Air Volume (VAV) fume hoods** - These hoods maintain constant face velocities by varying exhaust volumes in response to changes in sash position. Because only the amount of air needed to maintain the specified face velocity is pulled from the room, significant energy savings are possible when the sash is closed. However, since these hoods cost more than up front and more maintenance, effective sash management (e.g., pull sash closed when not using hood) is necessary. This type of system is the preferred system by EH&S.

3. Supply or auxiliary air hoods - These hoods are not permitted, unless an exception is granted by EH&S.

4. Ductless fume hoods are not permitted, unless an exception is granted by EH&S.

5. Perchloric/Hot Acid Hoods:

 a) Heated perchloric acid shall only be used in a laboratory hood specifically designed for its use and identified as "For Perchloric Acid Operations." (Exception: Hoods not specifically designed for use with perchloric acid
shall be permitted to be used where the vapors are trapped and scrubbed before they are released into the hood.)

b) Perchloric acid hoods and exhaust duct work shall be constructed of materials that are acid resistant, nonreactive, and impervious to perchloric acid.

c) The exhaust fan should be acid resistant and spark-resistant. The exhaust fan motor should not be located within the ductwork. Drive belts should not be located within the ductwork.

d) Ductwork for perchloric acid hoods and exhaust systems shall take the shortest and straightest path to the outside of the building and shall not be manifolded with other exhaust systems. Horizontal runs shall be as short as possible, with no sharp turns or bends. The ductwork shall provide a positive drainage slope back into the hood. Duct shall consist of sealed sections. Flexible connectors shall not be used.

e) Sealants, gaskets, and lubricants used with perchloric acid hoods, ductwork, and exhaust systems shall be acid resistant and nonreactive with perchloric acid.

f) A water spray system shall be provided for washing down the hood interior behind the baffle and the entire exhaust system. The hood work surface shall be watertight with a minimum depression of 13 mm (½ inch) at the front and sides. An integral trough shall be provided at the rear of the hood to collect wash-down water.

g) Spray wash-down nozzles shall be installed in the ducts no more than 5 ft. apart. The ductwork shall provide a positive drainage slope back into the hood. Ductwork shall consist of sealed sections, and no flexible connectors shall be used.

h) The hood surface should have an all-welded construction and have accessible rounded corners for cleaning ease.

i) The hood baffle shall be removable for inspection and cleaning.

j) Each perchloric acid hood must have an individually designated duct and exhaust system.

6. Radioactive Material Use

a) Fume hoods intended for use with radioactive isotopes must be constructed of stainless steel or other materials that will not be corroded by the chemicals used in the hood.
b) The interior of all radioisotope hoods must have coved corners to facilitate decontamination.

c) The hood exhaust may require filtration by HEPA or Charcoal HEPA filters. Where such is the likelihood, the hood must have a bag-out plenum for mounting such filters and fan capacity for proper operation of the hood with the filter installed. The most appropriate location for the plenum is near the exhaust port of the fume hood (i.e., proximal to the hood).

d) The cabinet on which the hood is installed shall be adequate to support shielding for the radioactive materials to be used therein.

e) In general, glove boxes with HEPA filtered exhausts shall be provided for operations involving unsealed radioactive material that emit alpha particles. Consult with the Radiation Safety for specifics.

7. American with Disabilities Act (ADA) Hoods: Must consult with Drexel University’s ADA Compliance Office regarding the number lab hoods to install in facilities, which are accessible to and usable by individuals with disabilities – recommend minimally one ADA hood per laboratory floor. These hoods must provide appropriate work surface heights, knee clearances, reach to controls, etc. to individuals in wheelchairs.

8. Glove Boxes: Glove boxes (positive and negative) must meet the type, design and construction requirements ANSI/AIHA Z9.5-2003, 5.14.

10. Special Purpose Hoods: These hoods include enclosures for operations for which other types of hoods are not suitable (e.g., enclosures for analytical balances, histology processing machines, special mixing stations, evaporation racks). These hoods must be designed per ANSI Z9.5 and the Industrial Ventilation manual.

G. Fume Hood Labeling

1. All hoods must be labeled with the following:
 a. Fan Number as designated by Facilities Management.
 b. Room and fume hood number.

2. Laboratory hoods and special local exhaust ventilation systems (SLEV) should be labeled to indicate intended use (e.g., “Perchloric Acid Hood”).
H. Biological Safety Cabinet, Fume Hood and Local Exhaust System Construction and Installation

1. New hoods can be mounted above a chemical storage cabinet, provided that the cabinet meets the City of Philadelphia Fire Code requirements for construction.

2. Type 316 stainless steel should be used for all parts of the fume hood system ventilation duct as long as compatibility is maintained.

3. Fume hood interior surfaces shall be constructed of corrosion resistant, non-porous, non-combustible materials such as type 316 stainless steel, and should be smooth and impermeable, with rounded corners. These materials shall have a flame spread index of 25 or less when tested in accordance with NFPA method 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.

4. Hood inserts are only permitted for radioactive iodination procedures specifically approved by the Drexel Radiation Safety Officer.

5. Laboratory hoods shall be provided with a means of containing minor spills.

6. There must be a horizontal bottom airfoil inlet at the front of the hood.

7. Adjustable baffles with horizontal slots must be present in the fume hood interior at the back and top.

8. Before a new fume hood is put into operation, an adequate supply of make-up air must be provided to the lab.

9. Face Velocity – Laboratory fume hoods shall provide an average face velocity within the range of 80 - 120 feet per minute (fpm). No one test velocity reading should vary by more than 20% of the average. Face velocity uniformity shall be achieved by installing a venturi valve inside the ductwork. The preferred face velocity at a sash height of 18 inches is 100 fpm. The preferred valve is manufactured by Phoenix Controls.

10. An LED airflow indicator shall be provided and located so that it is visible from the front of the fume hood and local exhaust unit. The airflow indicator shall be connected to the building automated system or other designated system. The preferred monitor is Phoenix Controls.

11. Baffles shall be constructed so that they may not be adjusted to restrict the volume of air exhausted through the laboratory hood.
12. Fans should run continuously without local control from hood location and independently of any time clocks.

13. For new installations or modifications of existing installations, controls for Laboratory hood services (eg., gas, air, and water) should be located external to the hood and within easy reach.

14. Shutoff valves for services, including gas, air, vacuum, and electricity shall be outside of the hood enclosure in a location where they will be readily accessible in the event of fire in the hood. The location of such a shut-off shall be legibly lettered in a related location on the exterior of the hood.

15. Laboratory hoods shall not have an on/off switch located in the laboratory. Exhaust fans shall run continuously without direct local control from laboratories.

16. Hard ducted biological safety cabinets shall be thimble connected to the exhaust system.

17. Sink cups in the fume hoods are prohibited, unless authorized by EH&S.

18. Local exhaust systems must be approved by EH&S prior to installation.

I. Fume Hood Power and Electrical

1. Chemical fume hood exhaust fans and airflow monitoring devices shall be connected to an emergency power system in the event of a power failure.

2. Emergency power circuits should be available for fan service so that fans will automatically restart upon restoration after a power outage and supply at least half of the normal airflow.

3. Momentary or extended losses of power shall not change or affect any of the control system’s set points, calibration settings, or emergency status. After power returns, the system shall continue operation, exactly as before, without the need for any manual intervention. Alarms shall require manual reset, should they indicate a potentially hazardous condition.

4. Fume hood ventilating controls should be arranged so that shutting off the ventilation of one fume hood will not reduce the exhaust capacity or create an imbalance between exhaust and supply for any other hood connected to the same system.

5. In installations where services and controls are within the hood, additional electrical disconnects shall be located within 15m (50ft) of the hood and shall
be accessible and clearly marked. (Exception: If electrical receptacles are located external to the hood, no additional electrical disconnect shall be required).

6. Hood lighting shall be provided by UL-listed fixtures external to the hood or, if located within the hood interior, the fixtures shall meet the requirements of NFPA 70, (National Electrical Code).

7. Light fixtures should be of the fluorescent type, and replaceable from outside the hood. Light fixtures must be displaced or covered by a transparent impact resistant vapor tight shield to prevent vapor contact.

8. The valves, electrical outlets and switches for utilities serving hoods should be placed at readily accessible locations outside the hood. All shutoff valves should be clearly labeled. Plumbing (e.g., vacuum lines) should exit the sides of the fume hood and not the bench top.

J. Sashes

1. Hoods shall have transparent movable sashes constructed of shatter-resistance, flame resistant material and capable of closing the entire front face.

2. Vertical-rising sashes are the only sash style permitted at the University. Horizontal sashes are prohibited unless authorized by EH&S must be attained.

3. A force of five pounds shall be sufficient to move vertically and/or horizontally moving doors and sashes.

4. Chemical fume hoods shall have a self-closing sash.

K. Ducting

1. Hood exhausts should be manifolded together except for:
 • Perchloric/hot acid hoods
 • hoods with washdown equipment
 • hoods that could deposit highly hazardous residues on the ductwork
 • exhaust requiring HEPA filtration or other special air cleaning
 • situations where the mixing of exhausted materials may result in a fire, explosion, or chemical reaction hazard in the duct system

Manifolded fume hood exhaust ducts shall be joined inside a fire rated shaft or mechanical room, or outside of the building at the roofline.
2. Horizontal ducts must slope at least 1 inch per 10 feet downward in direction of airflow to a suitable drain or sump.

3. Ducts exhausting air from fume hoods should be constructed entirely of noncombustible material. Gaskets should be resistant to degradation by the chemicals involved and fire resistant.

4. Automatic fire dampers shall not be used in laboratory hood exhaust systems. Fire detection and alarm systems shall not be interlocked to automatically shut down laboratory hood exhaust fans.

L. Exhaust

1. New exhaust fans shall be oriented in a vertical up direction.

2. Hood exhaust stacks shall extend at least 10 feet above the adjacent rooflines and air intakes. Discharge shall be directed vertically upward.

3. Hood exhausts shall be located on the roof as far away from air intakes as possible to preclude re-circulation of laboratory hood emissions within a building.

4. Discharge from exhaust stacks must have a velocity of at least 3,000 fpm. Achieving this velocity should not be done by the installation of a cone type reducer. The duct may be reduced, but the duct beyond the reduction should be of sufficient length to allow the air movement to return to a linear pattern.

5. Rain caps that divert the exhaust toward the roof are prohibited.

6. Laboratory ventilation exhaust fans shall be spark-proof and constructed of materials or coated with corrosion resistant materials for the chemicals being transported. V-belt drives shall be conductive.

7. Vibration isolators shall be used to mount fans. Flexible connection sections to ductwork, such as neoprene coated glass fiber cloth, shall be used between the fan and its intake duct when such material is compatible with hood chemical use factors.

8. Each exhaust fan assembly shall be individually matched (cfm, static pressure, brake horsepower, etc.) to each laboratory ventilation system.

9. Exhaust fans shall be located outside the building at the point of final discharge. Each fan shall be the last element of the system so that the ductwork through the building is under negative pressure.
10. Fans shall be installed so they are readily accessible for maintenance and inspection without entering the plenum.

M. Noise

1. System design must provide for control of exhaust system noise (combination of fan-generated noise and air-generated noise) in the laboratory. Systems must be designed to achieve an acceptable Sound Pressure Level (SPL) frequency spectrum (room criterion) as described in the 1991 HVAC Applications Handbook.

N. Specialty, Controlled Climate, and Cold Rooms

1. The issue of ventilation in cold rooms during periods of occupancy or for storage of hazardous materials must be addressed. EH&S should be consulted to review arrangements for providing fresh and exhaust air during periods of occupancy and for storage of hazardous materials or compressed gases.

2. Specialty rooms, designed for human occupancy must have latches that can be operated from the inside to allow for escape.

3. Latches and frames shall be designed to allow actuation under all design conditions, such as freezing. Magnetic latches are recommended.

4. Doors of walk-in specialty rooms must have viewing windows and external light switches.

O. Lab Hood Commissioning

1. Proper operation of fume hoods must be demonstrated by the contractor installing the fume hood prior to project closeout. The recommended containment performance test is ANSI/ASHRAE 110. The contractor must utilize the University's contracted vendor.
Section 1.2 EMERGENCY EYEWASH AND SAFETY SHOWER EQUIPMENT

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Scope</td>
<td>2</td>
</tr>
<tr>
<td>B. General Location</td>
<td>3</td>
</tr>
<tr>
<td>C. Eyewash Requirements</td>
<td>5</td>
</tr>
<tr>
<td>D. Deluge Shower Requirements</td>
<td>5</td>
</tr>
<tr>
<td>E. Testing</td>
<td>7</td>
</tr>
<tr>
<td>F. Approved Equipment</td>
<td>7</td>
</tr>
</tbody>
</table>
A. Scope

The Standard applies to all Drexel University and Drexel University college of Medicine facilities, including leased properties. This Standard presents the minimum performance requirements for eyewash and shower equipment for the emergency treatment of the eyes or body of a person exposed to injurious materials. It covers the following types of equipment: emergency showers, eyewash equipment, and combination shower and eyewash or eye/face wash.

1. All eyewash and deluge showers must comply with ANSI Z 358.1.

2. A plumbed eyewash shall be provided for all work areas where, during normal operations or foreseeable emergencies, the eyes of an employee may come into contact with a substance which can cause corrosion, severe irritation, or is toxic by skin absorption. Drench hoses, sink faucets, or showers are not acceptable eyewash facilities.

3. A plumbed eyewash shall be provided at all work areas where formaldehyde solutions in concentrations greater than or equal to 0.1% are handled.

4. An emergency shower shall be provided for all work areas where, during normal operations or foreseeable emergencies, areas of the body may come into contact with a substance which is corrosive, severely irritating to the skin or is toxic by skin absorption.

5. A deluge shower shall be provided at all work areas where formaldehyde solutions in concentrations greater than or equal to 1% are handled.

B. General Location

1. Emergency eyewash facilities and deluge showers shall be in unobstructed and accessible locations that require no more than 10 seconds or 25 feet for the injured person to reach along an unobstructed pathway (i.e., no doors without panic bars or which don't swing open when pushed). If both eyewash and shower are needed, they shall be located so that both can be used at the same time by one person.

2. American with Disabilities Act (ADA) Emergency Eyewash/Showers: Install an emergency eyewash/shower so that a disabled person can access it within 10 seconds of an ADA fume hood (minimally one ADA hood per laboratory floor). These emergency eyewash/showers must provide appropriate accessibility (e.g., activation of controls and height of eyecups) to individuals in wheelchairs.
Signage

3. Emergency eyewash and shower locations shall be identified with a highly visible sign. The areas around the eyewash or shower shall be well lighted and highly visible.

4. Whenever possible, the floor immediately beneath the eyewash and emergency shower, and to a radius of between about 12-30 inches, shall be a distinctive pattern and color to facilitate promoting a clear path of access.

Prohibitions Around Equipment

5. No obstructions, protrusions, or sharp objects shall be located within 16 inches from the center of the spray pattern of the emergency shower facility.

6. Electrical apparatus, telephones, thermostats, or power outlets should not be located within 18 inches of either side of the emergency shower or emergency eyewash facility (i.e., a 36-inch clearance zone).

C. Eyewash Requirements

Flushing Rates

1. A means shall be provided to ensure that a controlled flow of flushing fluid is provided to both eyes simultaneously.

2. Eyewash equipment shall be capable of delivering to the eyes not less than 0.4 gallons per minute of flushing fluid for 15 minutes.

Eyewash Positioning

3. The eyewash unit shall be positioned with the water nozzles 33-45 inches from the floor and 6 inches minimum from the wall or nearest obstruction. The unit must be located at an operable sink.

Equipment Activation

4. The valve shall be designed so that the flushing fluid remains on without requiring the use of the operator's hands. The valve shall be designed to remain activated until intentionally shut off.
Eyewash Equipment Protection

5. Nozzles shall be protected from airborne contaminants. The removal of the nozzle protection shall not require a separate motion by the operator when activating the unit.

D. Deluge Shower Requirements

Deluge Shower Positioning

1. The emergency shower location must have a level surface beneath the shower head.

2. Emergency shower heads shall be designed so that a flushing fluid column is provided that is not less than 82 inches and not more than 96 inches in height from the surface on which the user stands.

3. The shower head should not be mounted flush or recessed within any constructed surfaces or partitions and the center of the spray pattern shall be located at least 16 inches from any obstruction.

4. The spray pattern shall have a minimum diameter of 20 inches at 60 inches above the surface on which the user stands

Flushing Rates

5. Emergency shower heads shall be capable of delivering a minimum of 75.7 liters per minute (20 gpm) of flushing fluid.

6. The shower should be attached to a flushing fluid supply from a 1-inch minimum iron pipe size (IPS).

Equipment Activation

7. The valve shall be designed so that the flushing fluid remains on without requiring the use of the operator's hands. The valve shall be designed to remain activated until intentionally shut off.

8. The manual actuator, triangle pull, shall be located not more than 69 inches above the surface on which the user stands. The manual actuator shall be free from obstruction for 18 to 24 inches in all directions. The actuator shall not be mounted flush or recessed within any constructed surfaces or partitions.
Design for Maintenance/Use.

9. The water supply to showers and/or shower/eyewash combination units should be controlled by a ball-type shutoff valve which is visible and accessible to shower testing personnel in the event of leaking or failed shower head valves.

10. Any floor drain which may be in service during safety shower use shall be installed with a temporary plug which remains closed except when the shower is in use, or if protected from spills by a covered sump or berm system.

E. Testing

1. Proper operation of the equipment must be demonstrated by the contractor installing the emergency eyewash or shower equipment prior to project closeout and facility occupation. Tags to allow monthly testing records to be kept shall be affixed to the showers and eyewash fountains.

F. Approved Equipment

1. All emergency showers and eyewash facilities shall meet the requirements of ANSI Z358.1 and shall be installed in accordance with ANSI Z358.1.
Section 1.3: COMPRESSED GAS CYLINDERS

TABLE OF CONTENTS

A. Scope	1
B. Design Features for the Storage of Compressed Gas Cylinders	2
- General	2
C. Design Features for the Storage of Compressed Gas Cylinders	4
- Toxic and Highly Toxic Gases	4
A. Scope

The Standard applies to all Drexel University and Drexel College Medicine facilities, including leased properties. It covers all unfired pressure vessels (i.e., storage tanks; compressed gas cylinders) that have been designed to operate at pressures above 15 psig, including the storage and use of compressed gas cylinders and cryogenic fluids.

B. Storage of Compressed Gas Cylinders – General

Location/Design

1. Laboratory design shall include a storage area for cylinders of compressed gases where:
 - The cylinders are protected from external heat sources such as flame impingement, intense radiant heat, electric arc, or high temperature steam lines.
 - The cylinders are in a well protected, well ventilated, dry location, at least 20 feet from highly combustible materials.
 - The cylinders are stored in a ventilated area under negative pressurization.

2. Adequate space shall be made available for the segregation of gases by hazard class. Flammable gases shall not be stored with oxidizing agents. Separate storage for full or empty cylinders is preferred. Such enclosures shall serve no other purpose.

3. Design features which are prohibited:
 - Unventilated enclosures such as closest, lockers, coldrooms and cupboards.

4. Liquefied fuel-gas cylinders shall be stored in an upright position so that the safety relief device is in direct contact with the vapor space in the cylinder at all times.

5. The heating of flammable gas storage areas shall be indirectly heated, such as by air, steam, hot water, etc.
6. Gas cabinets shall be required for flammable, toxic and highly toxic gases.

7. Storage areas must be secure at all times against unauthorized access.

8. A secure central cylinder collection point must be provided. The collection must accommodate segregation of gases by hazard class and empty cylinder storage.

Cylinder Restraint Systems

9. Laboratory design shall include restraints for the storage of cylinders greater than 26 inches tall; the restraint system shall include at least 2 restraints (made of non-combustible materials), which are located at one-third and two-thirds the height of the cylinder.

10. The purchase and installation of compressed gas cylinder securing systems must be approved by EH&S.

11. Gas cylinder securing systems should be anchored to a permanent building member or fixture.

C. Storage of Compressed Gas Cylinders - Toxic and Highly Toxic Gases

Storage Systems

1. Storage systems for toxic and highly toxic compressed gas cylinders must be in accordance with the City of Philadelphia’s Fire Code. Laboratory design shall include one of the following storage systems:
 - ventilated gas cabinets/exhausted enclosures/ laboratory fume hoods; or
 - separate ventilated gas storage rooms without other occupancy or use.

2. When gas cabinets or exhausted enclosures are provided they shall be:
 a) Located in a room or area which has independent exhaust ventilation;
 b) Under negative pressure in relation to the surrounding area;
 c) A unit that has self-closing limited access parts or noncombustible windows to provide access to equipment controls, with an average face
velocity of at least 200 fpm and with a minimum of 150 fpm at any part of the access port or window; and with design criterion of 200 fpm at the cylinder neck when the average face velocity is >200 fpm.

d) Connected to an exhaust system;

e) A unit that has self-closing doors and be constructed of at least 0.097 inch (12 gauge) steel;

f) Internally sprinklered;

g) Contain no more than 3 cylinders per gas cabinet, except where cylinder contents are 1 pound net or less, in which case gas cabinets may contain up to 100 cylinders;

h) Fitted with sensors connected to alarms to notify in the event of a leak, or exhaust system failure.

3. When separate gas storage rooms are provided they shall:

a) Operate at a negative pressure in relation to the surrounding area;

b) Direct the exhaust ventilation to a dedicated exhaust system

c) Fitted with sensors connected to alarms to notify in the event of a leak or exhaust system failure.

Emergency Power

4. Emergency power shall be provided for exhaust ventilation, gas-detection systems, emergency alarm systems, and temperature control systems.

Detection System

5. The detection system shall initiate a local alarm and transmit a signal to a constantly attended location. Activation of the monitoring system shall automatically close the shut-off valve on toxic and highly toxic gas supply lines to the system being monitored.

6. An approved supervised smoke detection system shall be provided in rooms or areas where highly toxic compressed gases are stored indoors.
Security

7. Storage areas shall be secured against unauthorized entry.
Section 1.4: FLAMMABLE LIQUID STORAGE CABINETS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Scope</td>
<td>2</td>
</tr>
<tr>
<td>B. Design</td>
<td>2</td>
</tr>
<tr>
<td>C. D. Construction</td>
<td>3</td>
</tr>
<tr>
<td>D. E. Location</td>
<td>4</td>
</tr>
</tbody>
</table>
A. Scope

Flammable liquid storage cabinets are intended for the storage of flammable and combustible liquids. This Standard applies to all Drexel University and Drexel University College of Medicine facilities, including leased properties. It covers the design, construction, and installation of Flammable Liquid Storage Cabinets; the Standard does not address the proper use of Flammable Liquid Storage Cabinets.

B. Design

Approval/Submittal

1. Flammable Liquid Storage Cabinets must be UL listed and must meet the City of Philadelphia’s Fire Code requirements.

Cabinet Capability

2. Where flammable liquid storage cabinets are required, they shall be designed such that they do not exceed 120 gallons for the combined total quantity of all liquids (i.e., Classes 1, 2, and 3).

Labeling

3. Flammable Liquid Storage Cabinets shall be conspicuously labeled in red letters on contrasting background “FLAMMABLE - KEEP FIRE AWAY.”
4. When flammable or combustible liquids present multiple hazards, the laboratory design shall address the storage requirements for each hazard.

C. Construction

Materials

1. New Flammable Liquid Storage Cabinets must be constructed of steel.

2. Flammable Liquid Storage Cabinets shall be constructed as follows:
 a) Minimum wall thickness of 0.044 inches (18 gauge).
b) Double walled construction with a minimum air gap of 1-1/2-inches between the walls including the door, top, bottom, and sides.

c) Tight-fitting joints, welded or riveted.

d) Liquid-tight bottom with a door sill of at least 2 inches.

e) Three-point latch on doors.

Doors

3. Cabinet doors shall be self-closing and self-latching.

Venting

4. Flammable Liquid Storage Cabinets are not required to be vented except for odor control of malodorous materials. Vent openings shall be sealed with the bungs supplied with the cabinet or with bungs specified by the manufacturer of the cabinet. If vented, cabinet should be vented from the bottom with make-up air supplied to the top. It shall be vented outdoors to an approved location or through a flame arrester to a fume hood exhaust system. Construction of the venting duct should be equal to the rating of the cabinet.

D. Location

1. Flammable Liquid Storage Cabinets shall NOT be located near exit doorways, stairways, or in a location that would impede egress.
2. Flammable Liquid Storage Cabinets must NOT be wall mounted.
3. Laboratory design must ensure that Flammable Liquid Storage Cabinets are NOT located near an open flame or other ignition source.
XXII. APPENDIX B

Telecommunication and Data System Components
3 Quads outlets each 20 amp dedicated circuit @ 90 in on center a.f.f.

3/4 in Fire Rate Plywood starting 6 inche a.f.f. to 8’6” all walls

AC Unit for year round cooling above doorway

Three 4 inch EMT sleeves to ceiling of floor below

3 Quads outlets each 20 amp dedicated circuit @ 90 in on center a.f.f.
Drexel University:
General telecommunication and data system riser layout. Actual number of conduits, sleeves and IT (IDF) rooms is to be coordinated with University IT Manager per project.
Innovative Raceway Profile Provides Increased Wiring Capacity
Available Factory Prewired

Wiremold introduces the next generation in innovative surface raceway systems. The new DS4000® Series Raceway provides an aesthetically and functionally superior alternative to existing raceway profiles. DS4000 Series Raceway is a dual service steel raceway, with twin covers and a built-in divider that provides full isolation of services. Because of the innovative features and fittings, this raceway saves on installation time, costs less to specify, and provides 1/3 more wiring capacity than conventional box-style raceway profiles.

With its increased capacity and unique downward-facing activation capabilities, DS4000 Series Raceway is an ideal solution for any commercial, institutional, or industrial application requiring a high capacity metal raceway.

Sectioned view illustrating internal crossover capability, allowing adjacent downward facing power and data activations. Raceway profile meets or exceeds EIA/TIA bend radius requirements.

DS4000 Series Raceway prewired with streamlined downward facing power and data activations.

DS4000® Raceway in a contemporary office environment.

Now compatible with A/V devices.
4000 Designer Series™ Raceway represents a significant advancement in both the design and functionality of surface-mounted raceway systems. Design improvements not only make the raceway easier to install and wire, they result in a more functional, higher capacity system with a more appealing streamlined appearance. Unique adaptable fittings, multiple activation options, upgraded color options and a host of design improvements all contribute to the overall benefits and advantages of this innovative product. Listed below are the full range of improvements that have been incorporated into this industry-leading raceway system.

SYSTEM

- **Innovative profile.** Accommodates greater wiring capacity and has a more aesthetic appearance than conventional box-shaped profiles. Design allows for more efficient use of raceway capacity and provides 1/3 more wiring capacity than conventional raceways including Wiremold 4000 Series™ Raceway.
- **Adaptable fittings.** Reduces the number of SKUs required for inventory making DS4000™ Series Raceway easier to specify, order, and inventory.
- **Ease of installation.** DS4000™ Raceway systems can be installed by a single installer, reducing installation costs and maximizing installer resources. Innovative fittings and features also save time and money on future adds and changes.
- **No-saw cut base design.** Raceway base and Adjust-to-Fit™ couplings eliminate precise cuts required during installation, saving installation time. Raceway base is scored so that it can be easily cut with tin snips when required.
- **Overlapping fittings and faceplates.** Simpler, cleaner, and more attractive installation. No visible screws. Also allows raceway covers to be cut to larger tolerances.
- **Field-configurable.** Installers can easily adapt and modify installations to accommodate unforeseen obstacles. Saves installation time and reduces cost overruns from ordering additional parts not originally specified.
- **Dual cover raceway.** True separation of services allows data and power installers to access their respective channels individually.
- **Full capacity channels.** Power and data can be fed through either raceway channel, with special cross-over fittings available to maximize raceway capacity and maintain separation of services.
- **Room to grow.** Generous bend radius and increased raceway capacity support newer and larger capacity Cat 6a cables. Raceway accommodates increased power and data requirements in installations.
- **Meets or exceeds industry standards.** Conforms to UL, NEC, and NEMA standards and EIA/TIA recommendations.
- **Greater range of standard colors.** DS4000™ Steel Raceway is available in an updated palette of colors including Designer Ivory, Designer Gray, Matte Black, and Metallic Bronze. Custom colors are also available.
- **Patents pending.**

BASE

- **Easy to cut.** Base sections are scored at four-inch [102mm] intervals and can be easily cut with tin snips (when required). Specialized cutting tools or saws are not needed.
- **Easy to mount.** Base sections have mounting holes at four inches [102mm] intervals. Installer can utilize them with both 16” or 24” [406mm or 610mm] framing. Combined with included Adjust-to-Fit™ couplings, this ensures that mounting holes line up with wall studs.
- **One-piece base and divider.** Divider has pre-scored knockouts for cabling crossovers. One-piece design reduces installation time.
- **Hardware included.** Each ten-foot [3.04m] section of base includes wire clips (8 clips, 4 pre-installed) and a pair of Adjust-to-Fit™ couplings. Adjust-to-Fit™ couplings are also included with all raceway fittings.

FITTINGS

- **Streamlined fittings.** Innovative design eliminates large, bulky fittings that detract from raceway appearance.
- **Easy to install.** Adjust-to-Fit™ couplings (included) provide up to four inches [102mm] of lateral adjustment, eliminating the need for precision cuts and reducing waste caused by measuring errors.
- **Full-range of obstacle avoidance fittings.** Bypass large and small obstacles, as well as small offsets in supporting walls. Small obstacle avoidance fitting also can be used as a transition fitting to other Wiremold® metal raceway systems. Eliminates all barriers to installation.
- **Transition fittings.** Transition fittings connect DS4000™ Series Raceway to existing Wiremold 4000 Series Raceway installations or make transition to other Wiremold raceway systems (500 Series™, 700 Series™, 2400 Series™).
- **Cable bend radius control.** No need to order special fittings to meet bend radius compliance standards. All fittings include cable bend radius control and meet the specifications for Fiber Optic and UTP/STP cabling and exceed the TIA 569 requirements for communications pathways.
- **Tamper-proof.** Tamper-resistant fasteners are available to fully secure the raceway installation. Ideal for security systems, alarms or other security-sensitive installations.

ACTIVATIONS

- **Unique downward-facing activations.** Large bend radius for data cables and activations, streamlines the raceway appearance, and provides increased protection for both activations and cabling. Only raceway system that offers this feature.
- **Innovative downward-facing and/or side-channel activation features.** Raceway can be loaded with either downward-facing or conventional activations, or a combination of both as needed.
- **Cross-over feature.** Allows better utilization of raceway wiring capacity while maintaining separation of services.
- **Activations accept industry-standard devices and device plates.** Compatible with a full-range of wiring, data, and communication products.

PREWIRED

- **Available prewired.** DS4000™ Series Raceway can be ordered factory prewired saving installation time and money. Jobs are packed to individual job requirements and delivered on schedule to the job site.
- **Streamlined design.** Downward-facing activations provide a clean, streamlined appearance.
- **Visual circuit identification system included.** No need to order additional labels or marking systems.
DS4000 Series Raceway System Layout

- Various DS4000 series components labeled, including DS4000B, DS4000C, DS4001, DS4006, and more.
- Features include obstacle avoidance fittings, adjust-to-fit couplings, and universal downward facing device brackets.

DS4000 Series Raceway Ordering Information

<table>
<thead>
<tr>
<th>Catalog No./Item</th>
<th>Description/Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raceway Base</td>
<td>DS4000B
.040" [1.0mm] galvanized steel. Base has two 9/32" [7.1mm] diameter mounting holes on centers of approximately 4" [102mm] and pass through KOs on 8" [203mm] centers throughout. Packed four 10' [3.05m] lengths per carton.</td>
</tr>
<tr>
<td>Raceway Cover</td>
<td>DS4000C-DV, DS4000C-BK, DS4000C-DG, DS4000C-BZ
.040" [1.0mm] galvanized steel. Packed eight 5' [1.5m] lengths per carton.</td>
</tr>
<tr>
<td>Wire Clip</td>
<td>DS4000WC
For holding conductors in place.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Catalog No./Item</th>
<th>Description/Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjust-to-Fit™ Coupling</td>
<td>DS4001
For joining lengths of DS4000B together. Sold in pairs.</td>
</tr>
<tr>
<td>Seam Clip</td>
<td>DS4006-DV, DS4006-BK, DS4006-DG, DS4006-BZ
For covering seams where two sections of DS4000C come together.</td>
</tr>
<tr>
<td>Half Seam Clip/Blank Faceplate</td>
<td>DS4006B-DV, DS4006B-BK, DS4006B-DG, DS4006B-BZ
For covering seams where two sections of DS4000C Cover come together. Can also be used as a blank faceplate.</td>
</tr>
</tbody>
</table>

NOTE:
- "-DV" suffix indicates Designer Ivory color,
- "-DG" suffix indicates Designer Gray color,
- "-BK" suffix indicates Matte Black color,
- "-BZ" suffix indicates Metallic Bronze color.
DS4000 Series Raceway Ordering Information (continued)

<table>
<thead>
<tr>
<th>Catalog No./Item</th>
<th>Description/Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS40000A-DV</td>
<td>Entrance End Fitting – Full-capacity end fitting. Includes four 3/4” and 1 1/4” concentric trade size KOs and four 2 1/8” large capacity KOs.</td>
</tr>
<tr>
<td>DS40000B-BK</td>
<td>Blank End Fitting – For closing open end of DS4000B Raceway Base. Has two 3/4” and 1” trade size KOs.</td>
</tr>
<tr>
<td>DS40000B-DG</td>
<td>Flat Elbow – 90° flat corner for new lay-in or pull-through installations. One pair of DS40001 Couplings included.</td>
</tr>
<tr>
<td>DS40000B-BZ</td>
<td>Backfeed Coupling – Extra long coupling allows attachment to wall box or back fed 1” or 1 1/4” trade size conduit.</td>
</tr>
<tr>
<td>DS40000C-DV</td>
<td>Divided Tee Fitting – For new lay-in or pull-through installations. Two pair of DS40001 Couplings included.</td>
</tr>
<tr>
<td>DS40000C-BK</td>
<td>Internal Elbow – 90° internal corner for new installations. Flexible base conforms to out-of-square corners. One pair of DS4001 Couplings included.</td>
</tr>
<tr>
<td>DS40000C-DG</td>
<td>External Elbow – 90° external corner for new lay-in or pull-through installations. Flexible base conforms to out-of-square corners. One pair of DS4001 Couplings included.</td>
</tr>
<tr>
<td>DS40000C-BZ</td>
<td>Single Channel Duplex Device Plate – For 15A and 20A duplex receptacles or 106 style data frames.</td>
</tr>
<tr>
<td>DS40000D-DV</td>
<td>Single Channel Duplex Device Plate w/One Duplex Installed – Includes one Pass & Seymour 20A duplex receptacle with 6” [152mm] lead wires installed on bracket.</td>
</tr>
<tr>
<td>DS40000E-DV</td>
<td>Single Channel Decorator Device Plate – For 15A and 20A duplex receptacles, or 106 style data frames.</td>
</tr>
<tr>
<td>DS40000F-DV</td>
<td>Single Channel MAB Device Plate – For all communication MAB Device Plate, including mini adapter bezels.</td>
</tr>
<tr>
<td>DS40000G-DV</td>
<td>Single Channel NEMA Device Plate – For Turnlok® and most straight blade devices up to 50 Amps. Use with commercially-available flush plates.</td>
</tr>
</tbody>
</table>

NOTE: “-DV” suffix indicates Designer Ivory color, “-DG” suffix indicates Designer Gray color, “-BK” suffix indicates Matte Black color, and “-BZ” suffix indicates Metallic Bronze color.
DS4000 Series Raceway Ordering Information (continued)

<table>
<thead>
<tr>
<th>Catalog No./Item</th>
<th>Description/Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS4006B-DV</td>
<td>Half Seam Clip/Blank Faceplate – For covering seams where two sections of DS4000C Cover come together. Can also be used as a blank faceplate.</td>
</tr>
<tr>
<td>DS4006B-BK</td>
<td></td>
</tr>
<tr>
<td>DS4006B-DG</td>
<td></td>
</tr>
<tr>
<td>DS4006B-BZ</td>
<td></td>
</tr>
<tr>
<td>DSDWNU-DV</td>
<td>Downward Extron® MAAP</td>
</tr>
<tr>
<td>DSDWNU-BK</td>
<td>Device Plate – Accepts two Extron® Electronics MAAP single space modules.</td>
</tr>
<tr>
<td>DSDWNU-DG</td>
<td></td>
</tr>
<tr>
<td>DSDWNU-BZ</td>
<td></td>
</tr>
<tr>
<td>DS4075-DV</td>
<td>Small Obstacle/Transition</td>
</tr>
<tr>
<td>DS4075-BK</td>
<td>Fitting – For passing over previously installed conduits or raceways up to 2400 Series Raceway, or for transitioning to 500 Series”, 700 Series” or 2400D Series™ Raceway.</td>
</tr>
<tr>
<td>DS4075-DG</td>
<td></td>
</tr>
<tr>
<td>DS4075-BZ</td>
<td></td>
</tr>
<tr>
<td>DS4089-DV</td>
<td>Adapter to 4000 Series Raceway</td>
</tr>
<tr>
<td>DS4089-BK</td>
<td>For transitioning in-line from DS4000 Series Raceway to 4000 Series Raceway.</td>
</tr>
<tr>
<td>DS4089-DG</td>
<td></td>
</tr>
<tr>
<td>DS4089-BZ</td>
<td></td>
</tr>
<tr>
<td>DSTRK</td>
<td>Tamper-Resistant Kit – Includes 25 screws and bit to secure fitting covers to DS4000B Raceway Base.</td>
</tr>
<tr>
<td>640DS</td>
<td>DS4000C Cutter – Portable cover cutter provides clean square cuts for DS4000C Raceway Cover.</td>
</tr>
<tr>
<td>650RT</td>
<td>Fitting Cover Removal Tool – Allows for easy removal of all installed DS4000C Raceway Covers without damaging finish.</td>
</tr>
<tr>
<td>DVWE-S</td>
<td>Spray Paint – Used to touch up large areas.</td>
</tr>
<tr>
<td>DGWE-S</td>
<td>NOTE: Can only be shipped via ground transportation.</td>
</tr>
<tr>
<td>BKWE-S</td>
<td></td>
</tr>
<tr>
<td>BZWE-S</td>
<td></td>
</tr>
<tr>
<td>DVWE-P</td>
<td>Touch-Up Paint Pen – Used to touch up small areas.</td>
</tr>
<tr>
<td>DGWE-P</td>
<td></td>
</tr>
<tr>
<td>BKWE-P</td>
<td></td>
</tr>
<tr>
<td>BZWE-P</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: “-DV” suffix indicates Designer Ivory color, “-DG” suffix indicates Designer Gray color, “-BK” suffix indicates Matte Black color, and “-BZ” suffix indicates Metallic Bronze color.
DS4000 Series Raceway Prewired Raceway Features

<table>
<thead>
<tr>
<th>FEATURES</th>
<th>STANDARD</th>
<th>OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Devices</td>
<td>Ortronics or Pass & Seymour Activate Connectivity System Devices</td>
<td>Other manufacturers</td>
</tr>
<tr>
<td>Electrical Devices</td>
<td>Pass & Seymour</td>
<td>Other manufacturers and some International devices</td>
</tr>
<tr>
<td>Base Length</td>
<td>Longest = 10’ [2.54m], shortest = 1’ [305mm]</td>
<td>—</td>
</tr>
<tr>
<td>Installation</td>
<td>Surface mounted</td>
<td>Downward Facing Activations; Front Facing Activations</td>
</tr>
<tr>
<td>Finish</td>
<td>Baked enamel finish – Designer colors</td>
<td>Custom colors</td>
</tr>
<tr>
<td>Wire Type</td>
<td>THHN stranded</td>
<td>Options per specification</td>
</tr>
<tr>
<td>Wiring Splices</td>
<td>Insulation displacement connectors</td>
<td>Continuous wiring or twist-on wire connector</td>
</tr>
<tr>
<td>Grounding Conductors</td>
<td>Wire gauge per National Electrical Code (NEC) and shared grounding wires</td>
<td>Oversized and/or separate grounding wires</td>
</tr>
<tr>
<td>Device Identification</td>
<td>Gray self-adhesive polyester label with black letters</td>
<td>Self-adhesive engraved nameplate</td>
</tr>
<tr>
<td>Neutrals</td>
<td>Shared neutral</td>
<td>Oversized and/or separate neutral wires</td>
</tr>
<tr>
<td>Pigtails</td>
<td>12” [305mm] feeds and receptacle leads</td>
<td>Per specification</td>
</tr>
<tr>
<td>Conduit Feeds</td>
<td>Raceway drilled at job site</td>
<td>Entrance end cap</td>
</tr>
<tr>
<td>Record Drawings</td>
<td>3 sets and 2 copies of marked-up blueprints</td>
<td>Per job requirements</td>
</tr>
<tr>
<td>Submittal Services</td>
<td>Detailed submittal</td>
<td>Submittal free</td>
</tr>
</tbody>
</table>

DS4000 Series Raceway Prewired Downward Device Options

Flush downward facing power and data are available in the following single or multi-circuit 20A configurations:

- **DATA**
- **POWER**

![Diagram showing DATA and POWER configurations](image)

NOTE: Top channel should be reserved for data to provide highest capacity and bend radius. Standard forward facing faceplates can be intermixed with prewired, but are subject to location restrictions due to the location of downward facing data. Consult factory for recommended locations.

Device and Raceway Labeling Detail for Prewired Applications

- Device labeling is available in the following materials:
 - Gray self-adhesive polyester label with black lettering (standard).
 - Other color self-adhesive polyester labels.
 - Engraved phenolic nameplates with adhesive backing.

- The back of the raceway is labeled with the raceway number and the room or area number(s).

![Labeling detail using the front activation plates.](image)

![Labeling detail using the downward facing activation plates.](image)

DS4000 Series Raceway Ordering Specifications for Prewired Applications

Two options available when ordering a prewired job:

1. **Detailed Submittal**
 - The detailed submittal will show exactly how each raceway run will be built including lengths, number and type of receptacles, wiring schematics, circuiting information, etc. The contractor and/or distributor must review, clarify any information not clearly indicated on the drawings or specs, approve, and return to the factory before production can begin.

2. **Submittal Free**
 - The Prewired Express Building Plan Checklist is filled out by the contractor or distributor and sent along with plans, casework, and specs to the factory. No submittal is required and the project is scheduled for production upon receipt of all necessary information.
DS4000 Raceway Wire Fill Capabilities for Power

<table>
<thead>
<tr>
<th>WIRE SIZE</th>
<th>O.D.</th>
<th>NUMBER OF CONDUCTORS (40% FILL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THHN/THWN</td>
<td>Inches [mm]</td>
<td>WITHOUT DEVICES</td>
</tr>
<tr>
<td>14 AWG</td>
<td>0.111 [2.8]</td>
<td>206</td>
</tr>
<tr>
<td>12 AWG</td>
<td>0.130 [3.3]</td>
<td>150</td>
</tr>
<tr>
<td>10 AWG</td>
<td>0.164 [4.2]</td>
<td>95</td>
</tr>
<tr>
<td>8 AWG</td>
<td>0.216 [5.5]</td>
<td>54</td>
</tr>
<tr>
<td>6 AWG</td>
<td>0.254 [6.5]</td>
<td>39</td>
</tr>
</tbody>
</table>

NOTE: For additional information, refer to the Technical Section of the current version of ED439 (Wiremold Product Guide).

DS4000 Raceway Wire Fill Capabilities for Communication

<table>
<thead>
<tr>
<th>CABLE TYPE</th>
<th>CATEGORY/ DESIGNATION</th>
<th>O.D.</th>
<th>40% FILL w/DOWNWARD ACTIVATION/CROSSOVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWISTED PAIR</td>
<td>4-pair, 24 AWG Cat 3</td>
<td>0.190 [4.8]</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>4-pair, 24 AWG Cat 5e</td>
<td>0.210 [5.3]</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>4-pair, 24 AWG Cat 6</td>
<td>0.250 [6.3]</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>4-pair, 24 AWG Cat 6a*</td>
<td>0.354 [9.0]</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>25-pair, 24 AWG</td>
<td>0.410 [10.4]</td>
<td>15</td>
</tr>
<tr>
<td>COAXIAL</td>
<td>RG6/U</td>
<td>0.270 [6.9]</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>ZipCord</td>
<td>0.118 x 0.236 [3 x 6]</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Round 4 Strand Fiber</td>
<td>0.187 [4.8]</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Round 6 Strand Fiber</td>
<td>0.256 [6.5]</td>
<td>38</td>
</tr>
</tbody>
</table>

Category 6 Augmented cable for 10 gigabit ethernet – max allowed cable diameter per Addendum 11 to ANSI/TIA-568-B.2.

Prewired DS4000 Cover Wire Fill Capacities with Downward Facing Power & Data Devices

<table>
<thead>
<tr>
<th>WIRE SIZE</th>
<th>O.D.</th>
<th>NO OF CONDUCTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>THHN/THWN</td>
<td>Inches [mm]</td>
<td>40% FILL</td>
</tr>
<tr>
<td>14 AWG</td>
<td>0.111 [2.8]</td>
<td>31</td>
</tr>
<tr>
<td>12 AWG</td>
<td>0.130 [3.3]</td>
<td>23</td>
</tr>
<tr>
<td>10 AWG</td>
<td>0.164 [4.2]</td>
<td>14</td>
</tr>
<tr>
<td>8 AWG</td>
<td>0.216 [5.5]</td>
<td>8</td>
</tr>
<tr>
<td>6 AWG</td>
<td>0.254 [6.5]</td>
<td>6</td>
</tr>
</tbody>
</table>

NOTE: Prewired downward facing covers are punched in line for a sleek flush look. Power conductors are provided in the lower channel. Additional wires can be added and should not exceed totals above. Communications are to be installed in the top channel – refer to standard cable fill chart for capacities.

DS4000 Raceway Fittings Wire Fill Capacity Chart

<table>
<thead>
<tr>
<th>WIRE SIZE</th>
<th>O.D.</th>
<th>DS4010A* 40% 60%</th>
<th>DS4011 40% 60%</th>
<th>DS4015 40% 60%</th>
<th>DS4017** 40% 60%</th>
<th>DS4018** 40% 60%</th>
<th>DS4075 40% 60%</th>
<th>DS4075A** 40% 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>THHN</td>
<td>Inches [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.111 [2.8]</td>
<td>125 187 171 256</td>
<td>62 93 160 239</td>
<td>142 213 106 160 142 213</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.130 [3.3]</td>
<td>91 137 125 187</td>
<td>45 68 116 175</td>
<td>104 156 78 116 104 156</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.164 [4.2]</td>
<td>57 86 78 118</td>
<td>28 43 73 110</td>
<td>65 98 49 73 65 98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.216 [5.5]</td>
<td>33 50 45 68</td>
<td>16 25 42 63</td>
<td>38 57 28 42 38 57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.254 [6.5]</td>
<td>24 36 33 49</td>
<td>12 18 31 46</td>
<td>27 41 20 31 27 41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTP</td>
<td>2-pair, 24 AWG</td>
<td>0.150 [4.8]</td>
<td>68 103 94 140</td>
<td>49 74 87 131</td>
<td>78 117 58 87 78 117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-pair, 24 AWG Cat 3</td>
<td>0.190 [4.8]</td>
<td>43 64 58 87</td>
<td>31 46 55 82</td>
<td>49 73 36 55 49 73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-pair, 24 AWG Cat 5e</td>
<td>0.210 [5.3]</td>
<td>35 52 48 72</td>
<td>25 38 45 67</td>
<td>40 60 30 45 40 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-pair, 24 AWG Cat 6</td>
<td>0.250 [6.3]</td>
<td>25 37 34 51</td>
<td>18 27 32 47</td>
<td>28 42 21 32 28 42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-pair, 24 AWG Cat 6a*</td>
<td>0.354 [9.0]</td>
<td>12 18 17 25</td>
<td>9 13 16 24</td>
<td>14 21 10 16 14 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25-pair, 24 AWG</td>
<td>0.410 [10.4]</td>
<td>12 18 16 24</td>
<td>9 13 15 23</td>
<td>14 20 10 15 14 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coaxial</td>
<td>RG6/U</td>
<td>0.270 [6.9]</td>
<td>21 32 29 43</td>
<td>15 23 27 41</td>
<td>24 36 18 27 24 36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber</td>
<td>ZipCord</td>
<td>0.118 x 0.236 [3 x 6]</td>
<td>44 65 59 89</td>
<td>31 47 56 83</td>
<td>50 74 37 56 50 74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Round 4 Strand Fiber</td>
<td>0.187 [4.8]</td>
<td>44 66 60 90</td>
<td>32 48 56 85</td>
<td>50 75 38 56 50 75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Round 6 Strand Fiber</td>
<td>0.256 [6.5]</td>
<td>24 35 32 48</td>
<td>17 26 30 45</td>
<td>27 40 20 30 27 40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Entrance end fitting fill rate is calculated using backfeed capability and radius inserts. Inserts are removable and fitting can obtain maximum raceway fill from utilizing end fitting knockouts and removing radius control inserts.

**Calculated using radius control inserts. Inserts are factory installed and may be removed in order to obtain full raceway capacity if radius control is not required.*
Now you have a wide range of options for providing datacom connectivity into Wiremold/Legrand Pathways. They are:

- **Ortronics® TracJack® and Series II Modular Connectivity Solutions**
- **Pass & Seymour Activate™ Modular Inserts**
- **Open System Communication Modules**

Ortronics® Connectivity

TracJack® Individual Jack System
- Front-loading, snap-in design supports future moves adds and changes
- Inserts for voice, data, audio, and video
- Available Category 3, 5e, 6, USOC 6-position, and other media
- Flat or angled 45° exit configurations
- Choice of 13 colors and color matched to Wiremold Systems
- Universal T568A/B wiring format

Series II Front-Loading, Module System
- Module design features easy snap-in front-loading design
- Linear 110 punch down format for easy termination
- Inserts for voice, data, audio, and video
- Available Category 3, 5e, 6, USOC 6-position, and other media
- Available in flat or angled 45° exit configurations
- Color matched to Wiremold Systems

For detailed product selection refer to the Ortronics Catalog or visit www.ortronics.com.

Pass & Seymour Legrand Network Wiring

Activate™ Series Front-Loading Inserts
- Modular inserts for voice, data, audio and video applications
- Front-load, snap-in design
- Color and texture matched to Wiremold Systems
- Available Category 3, 5e, 6, as well as 6-position USOC
- Universal T568A/B wiring format

For detailed product selection refer to the Pass & Seymour Network Wiring Catalog or visit www.passandseymour.com.

Open Connectivity Solutions

Wiremold Open System Communications Modules
- Accommodate a wide range of manufacturers’ communications outlets including keystone jacks, as well as proprietary solutions from Avaya (Systimax) and NORDX
- Modules insert into a wide range of Wiremold Systems
- Pre-punched faceplates accept common communication devices

NOTE:

For more information on integrating connectivity into Wiremold Cable Management Systems contact the Wiremold Applications Engineering Team or your local Wiremold Sales Representative.
AS TRAPEZE HANGING CLIP

ACCOMMODATES 1/4", 3/8", & 1/2" THREADED ROD

lb
0.132
NOTE:
(1) KIT CONTAINS (1) DROPOUT,
(2) EZBN 1/4 AND (2) CE25.
INSTALLATION GUIDE

CABLOFIL

© legrand®
CABLOFIL WIRE MESH TRAY

Cablofil, the inventor of wire mesh cable tray is a revolutionary cable management system that provides exceptional strength combined with the flexibility to adapt easily to field requirements. Installation is easier since wire mesh requires fewer parts and the FAS system allows splice, bracket and accessory connections without hardware! Manufactured in the heartland of the US, Cablofil is dedicated to providing superior quality product, service and expertise.

INDEX

INSTRUCTIONS
FINISHES 4
HOW TO CUT CABLE TRAY 5
HOW TO SPLICE CABLE TRAY 6
FASLOCK DIRECTIONAL CHANGES 7
T JUNCTIONS: RAD T 90 KIT 8
T JUNCTIONS: EZ T 90 KIT 9
90° BENDS: RAD T 90 KIT 10
90° BENDS: EZ T 90 KIT 11
Y JUNCTIONS 12
90° JUNCTIONS 13
SWEEPS - SWK 14
SWEEPS - FASLOCK 15
REDUCTIONS 16
CHANGING LEVELS 16
BONDING AND GROUNDING 17
LOADING 17
SUPPORT SPACING 17-18

PRODUCTS
TRAY 19
TRAY COVERS 19
SPlicing 19-20
ACCESSORIES 20
WALL MOUNTINGS 21
CEILING MOUNTINGS 21-22
UNDER FLOOR MOUNTINGS 22
OTHER MOUNTING 23

For more information visit www.cablofil.com
FINISHES

Cablofil wire cable tray and accessories are available in a variety of finishes to meet any industry need, from decorative to extreme environments. Use this chart to help you determine the best finish for your application and its availability.

Standard finish is EZ, electroplated zinc. [Indoor applications]
Stock finishes available include [EZ], electroplated zinc, [316L], 316 stainless steel, [GC], Hot dipped galvanized, [BL] Black powder coat paint

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MATERIAL</th>
<th>FINISH & STANDARD</th>
<th>Interior Installations</th>
<th>Exterior Installations</th>
<th>Petroleum Plants</th>
<th>Chemical Plants</th>
<th>Marine/Offshore</th>
<th>Military</th>
<th>Mining/Refining</th>
<th>Food Processing</th>
<th>Waste Water</th>
<th>Class I, Zone 1</th>
<th>Class I, Zone 2</th>
<th>Class IIB, Zone 2</th>
<th>Class IIC Environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG</td>
<td>Carbon Steel ASTM A 653</td>
<td>Pre-Galvanized: Continuous Galvanization Before Fabrication ASTM A 653</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>EZ</td>
<td>Carbon Steel ASTM A 653 Grade 1100</td>
<td>Electroplated: Electronic plating ASTM B 833</td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>Carbon Steel ASTM A 653 Grade 1100</td>
<td>Hot Dipped Galvanized: After Fabrication ASTM A 123</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>Carbon Steel ASTM A 653 Grade 1100</td>
<td>Dacromet: Zinc and Aluminium Protection Equivalent to Hot Dip Galvanization ASTM F 1136</td>
<td></td>
</tr>
<tr>
<td>304L</td>
<td>Stainless Steel AISI Type 304L</td>
<td>Stainless Steel 304L: Cleaned and Passivated ASTM A 360</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>316L</td>
<td>Stainless Steel AISI Type 316L</td>
<td>Stainless Steel 316L: Cleaned and Passivated ASTM A 360</td>
<td></td>
</tr>
<tr>
<td>BL</td>
<td>Carbon Steel ASTM A 653 Grade 1100</td>
<td>Black Painted: Black Powder Coated ASTM D 3451</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>Carbon Steel ASTM A 653 Grade 1100</td>
<td>Custom Painted: Custom Color Powder Coated ASTM D 3451</td>
<td></td>
</tr>
</tbody>
</table>

- recommended • possible

For a more detailed explanation of finish standards and compatibility, visit www.cablofil.com.
HOW TO CUT CABLOFIL CABLE TRAY

- Always use side action bolt cutters.
- Angle all cuts away from the new end.
- Cut each wire with one clean cut – eliminating any grinding or touch-up.

- Cut the bottom wires first, in order as shown, from the underside of the tray.
- Rest the lower jaw of the cutters against the cradle wire and cut at an angle away from the new end.

- Cut the side wires next, starting with the top wire.
- Make sure the finished cut is safe and ready for installation.

USING A POWER CUTTER TO CUT CABLOFIL CABLE TRAY

Cutyx® fil

Cutyx from Cablofil makes cutting wire cable tray easy. This lightweight power tool features a 35° swivel cutting head to make cuts from any angle. One button control engages and retracts blade for each cut. Cutyfil Kit comes in a padded carrying case with 2 batteries and a charger.

Use the same cutting procedures as outlined on the previous page when using Cutyfil. Remember to always wear safety goggles and follow safe procedures when using power equipment.
HOW TO SPLICE CABLOFIL CABLE TRAY - EDRN

SPLICING GUIDELINES

<table>
<thead>
<tr>
<th>Type</th>
<th>Length (mm)</th>
<th>12" (300 mm)</th>
<th>18" (450 mm)</th>
<th>18" > 24" (450 > 600 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDRN</td>
<td>2 x EDRN</td>
<td>2 x EDRN</td>
<td>2 x EDRN</td>
<td></td>
</tr>
<tr>
<td>EDRN</td>
<td>2 x EDRN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. Strip the ends of the tray to be joined.
2. Insert the EDRN splices as needed on the side wall.
4. Secure with EDRN staples on the side wall.

HOW TO SPLICE CABLOFIL CABLE TRAY - PRECLICK

SPLICING GUIDELINES

<table>
<thead>
<tr>
<th>Type</th>
<th>Length (mm)</th>
<th>12" (300 mm)</th>
<th>18" (450 mm)</th>
<th>18" > 24" (450 > 600 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRECLICK</td>
<td>2 x PRECLICK</td>
<td>2 x PRECLICK</td>
<td>2 x PRECLICK</td>
<td></td>
</tr>
<tr>
<td>SWK</td>
<td>1 x SWK</td>
<td>2 x SWK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. Strip the ends of the tray to be joined.
2. Insert the PRECLICK splices as needed on the side wall.
4. Secure with PRECLICK staples on the side wall.
5. Join bent lengths of Cablofil tray and snap in place (two optional)

HOW TO SPLICE CABLOFIL CABLE TRAY - SWK

- Use SWK to splice any two sections of Cablofil tray.
- Swaged nut allows clamp to be stationary while nut is tightened.
- Consult chart below for correct number of SWK sets needed for each width of tray.
HOW TO SPLICE CABLEFIL CABLE TRAY - CE 25, CE 30

- Use CE 25 and CE 30 with EZ BIN 1/4 to splice any two sections of Cablefil tray.
- Consult chart below for correct number of Nut/ Bolt/Clamp sets needed for each width of tray.

DIRECTIONAL CHANGE HARDWARE

90 DEGREE BENDS

<table>
<thead>
<tr>
<th>TRAY WIDTH</th>
<th>GRY REQUIRED</th>
<th>CUT INSTRCT.</th>
<th>GRY REQUIRED</th>
<th>CUT INSTRCT.</th>
<th>GRY REQUIRED</th>
<th>CUT INSTRCT.</th>
<th>GRY REQUIRED</th>
<th>CUT INSTRCT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2"</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>p. 15</td>
<td>-</td>
<td>-</td>
<td>1 kit</td>
<td>p. 11</td>
</tr>
<tr>
<td>4"</td>
<td>2</td>
<td>p. 16</td>
<td>2</td>
<td>p. 15</td>
<td>1 kit</td>
<td>p. 10</td>
<td>1 kit</td>
<td>p. 11</td>
</tr>
<tr>
<td>6"</td>
<td>3</td>
<td>p. 16</td>
<td>4</td>
<td>p. 15</td>
<td>1 kit</td>
<td>p. 10</td>
<td>1 kit</td>
<td>p. 11</td>
</tr>
<tr>
<td>8"</td>
<td>4</td>
<td>p. 16</td>
<td>4</td>
<td>p. 15</td>
<td>1 kit</td>
<td>p. 10</td>
<td>1 kit</td>
<td>p. 11</td>
</tr>
<tr>
<td>10"</td>
<td>6</td>
<td>p. 16</td>
<td>6</td>
<td>p. 15</td>
<td>1 kit</td>
<td>p. 10</td>
<td>1 kit</td>
<td>p. 11</td>
</tr>
<tr>
<td>12"</td>
<td>9</td>
<td>p. 16</td>
<td>8</td>
<td>p. 15</td>
<td>1 kit</td>
<td>p. 10</td>
<td>1 kit</td>
<td>p. 11</td>
</tr>
<tr>
<td>14"</td>
<td>10</td>
<td>p. 16</td>
<td>9</td>
<td>p. 15</td>
<td>1 kit</td>
<td>p. 10</td>
<td>1 kit</td>
<td>p. 11</td>
</tr>
<tr>
<td>16"</td>
<td>12</td>
<td>p. 16</td>
<td>11</td>
<td>p. 15</td>
<td>1 kit</td>
<td>p. 10</td>
<td>1 kit</td>
<td>p. 11</td>
</tr>
</tbody>
</table>

HORIZONTAL TEE

<table>
<thead>
<tr>
<th>TRAY WIDTH</th>
<th>GRY REQUIRED</th>
<th>CUT INSTRCT.</th>
<th>GRY REQUIRED</th>
<th>CUT INSTRCT.</th>
<th>HARMONIZED REQUIRED</th>
<th>CUT INSTRCT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2"</td>
<td>-</td>
<td>-</td>
<td>1 kit</td>
<td>p. 9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4"</td>
<td>1 kit</td>
<td>p. 8</td>
<td>1 kit</td>
<td>p. 9</td>
<td>p. 12</td>
<td>p. 12</td>
</tr>
<tr>
<td>6"</td>
<td>1 kit</td>
<td>p. 8</td>
<td>1 kit</td>
<td>p. 9</td>
<td>p. 12</td>
<td>p. 12</td>
</tr>
<tr>
<td>8"</td>
<td>1 kit</td>
<td>p. 8</td>
<td>1 kit</td>
<td>p. 9</td>
<td>p. 12</td>
<td>p. 12</td>
</tr>
<tr>
<td>10"</td>
<td>1 kit</td>
<td>p. 8</td>
<td>1 kit</td>
<td>p. 9</td>
<td>p. 12</td>
<td>p. 12</td>
</tr>
<tr>
<td>12"</td>
<td>1 kit</td>
<td>p. 8</td>
<td>1 kit</td>
<td>p. 9</td>
<td>p. 12</td>
<td>p. 12</td>
</tr>
<tr>
<td>14"</td>
<td>1 kit</td>
<td>p. 8</td>
<td>1 kit</td>
<td>p. 9</td>
<td>p. 12</td>
<td>p. 12</td>
</tr>
<tr>
<td>16"</td>
<td>1 kit</td>
<td>p. 8</td>
<td>1 kit</td>
<td>p. 9</td>
<td>p. 12</td>
<td>p. 12</td>
</tr>
</tbody>
</table>

For more information visit www.cablefil.com
One RAD T 90 KIT will make one T Junction.
One EZ T 90 KIT will make one T Junction.

For more information visit www.cablofil.com
One RAD T 90 KIT will make two 90° Bends.
One EZ T 90 Kit will make two 90° bends. For complete kit description see page 22.
One EZ T 90 KIT will make two 90° Junctions.

OTHER THAN 90° JUNCTIONS

For more information visit www.cablofil.com
Sweeps can be formed easily on site by cutting some of the side and bottom wires. Use the SWK method to secure desired curve. Always place bolt heads to inside of tray to prevent frayed wires.
Sweeps can be formed easily on site by cutting some of the side and bottom wires. Use the FASLOCK method to secure desired curve.
REDUCTIONS

CHANGING LEVELS

To avoid obstructions or change levels, cut the side wires as shown and bend Cablefi cable tray to the angles needed.

CUTTING AND BENDING
BONDING AND GROUNDING

Per NEC 392, the national electrical code section for cable tray, all cable tray systems must be properly BONDED, per section 259.96. To meet this requirement, Cablofil recommends that UL classified splices are used to join sections and that the cable tray be bonded to building steel or the facility grounding system every 50'-60'. By bonding the tray every 50'-60', the tray will maintain a low potential to ground which reduces EMI and provides a continuous path for stray currents. Steel trapeze type hangers clamped securely to building steel usually provide a solid bond. Cablofil standard splices (SWK, EDEN, EZBN, EDT, EZT90, RADT9) are designed to have less than 1 milliohm of resistance between connections and provide bonding between sections. These splices have been tested by UL as part of the cable tray grounding system. Painted Cablofil wire mesh tray requires the outer mask of the conductive surface be removed at each end of the tray prior to installing the (SWK) splice. This (SWK) splice provides a UL Classified Bonding continuity between painted tray sections. All cable tray needs to be electrically continuous per NEC 250.96. Standard Cablofil splices provide continuity per 250.96. Cutting and removal of cable tray sections still allow continuity per 250.96 and only affects the rare use of cable tray as the EGC. Use of cable tray as an EGC is rare since UL requires all multiconductor cables to contain an integral EGC and single conductor cables are only used in a few industrial applications.

LOADING

Cablofil has been tested to UL, CSA, NEMA VE1 and IEC standards. Cablofil wire mesh tray and supports are designed to support any cable load allowed by the NEC when supports are spaced on 8' spans. Only the heaviest cables (750 kcmil multiconductor power or larger) may require shorter spans. For specific loading go to the interactive load table on www.cablofil.com and choose your exact cable for detailed cable capacity and span requirements.

SUPPORT SPACING

Cablofil comes in 118" lengths and straight sections are designed for 6'-8" support spacing; (building joists or purlins are typically on 6"-7" spacing)

Cablofil has developed the following diagrams as a general guideline for supporting Field Fabricated Wire Mesh Tray. These guidelines will provide assistance in estimating and locating supports for the most common wire mesh tray installations. Supports are required as some of the side wires have been cut and the load capacity has been reduced. In actual installation, shallow and narrow trays may not require as many supports just as deep and wide trays may require additional supports. The installer should keep in mind that unique requirements arise in the field and practical solutions are often simple.

Horizontal Sweep Support

Center support not required on trays less than 12" wide and sweeps less than 45 degrees.

For more information visit www.cablofil.com
Horizontal Y Support

Center support not required on trays less than 12" wide.

Reduction Support

Horizontal Cross Support

On 24" wide items, recommended distance is 1 ft. 6 in. (457mm) from splice connection.

Horizontal Tee Support

Additional support recommended at back of tee (shown) or directly under tee, diagonally positioned, for 4" and 6" deep trays, 18" and wider.

Vertical Transition

Support vertical transition at top support location. Distances of 3 ft. and larger should be supported at each end as illustrated.
<table>
<thead>
<tr>
<th>TRAY</th>
<th>TRAY COVERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF 54</td>
<td>CTXF 35 Telex Rail Cover</td>
</tr>
<tr>
<td></td>
<td>UC35 Telex Rail Standoff Support</td>
</tr>
<tr>
<td>CF 105</td>
<td>CVN Cablofil Tray Cover</td>
</tr>
<tr>
<td>CF 150</td>
<td>CLIP FO2 Cablofil Cover Clip</td>
</tr>
<tr>
<td>EasyPack</td>
<td>COT 30/COT 54 Divider Strip</td>
</tr>
<tr>
<td>CFG</td>
<td>COT 105/COT 150 Divider Strip</td>
</tr>
<tr>
<td></td>
<td>COT J Divider Coupler</td>
</tr>
<tr>
<td>CFG G MINI</td>
<td>EDRN Fast Splice</td>
</tr>
<tr>
<td>CFL</td>
<td>EDRNTOOL Mounting Tool</td>
</tr>
<tr>
<td>TXF35</td>
<td>PRE-CLICK Splice</td>
</tr>
<tr>
<td>FCF 54</td>
<td>EDT Splice Plate</td>
</tr>
<tr>
<td></td>
<td>ED 275 Universal Splice Bar</td>
</tr>
</tbody>
</table>

For more information visit www.cablofil.com
OTHER MOUNTINGS

- FASCLM: FAS Clamp
- ETC: Tray Beam Support
- EZBC: Threaded Rod Hanger
- C 50: Electrical Box Support
- SBDA: Conduit and Box Support
- CM501: Industrial Box Mounting Bracket
- CABEXIT: Cable Exit
- HB 2: Wall/Floor Termination Bracket
- DROP OUT: Cable Drop Out
- CCLMP: Cable Clamp
- MFM: Metallic Multifix Plate
- FLAMESTOPPER™: Flamestopper

- EZVC: VELCRO Roll
- CABLO SNAP: Cable Bungler
- EZJB: 5/16 J-Bolt
- FAS ROLLER: Fas Roller
- HD FAS ROLLER: High-Definition Fas Roller
- GRIPPLE: Wire Cable Hanging Support
- FS 41: FastRut Connector
- SZMCKIT: Seismic Bracing Kit
- SZMCCUTR: Cable Cutter
- SZMCSWAG: Hand Swager
- GNDSB: Grounding Lug
- GNDCL: Grounding Lug

For more information visit www.cablofil.com
<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>LENGTH (IN)</th>
<th>FIGURE</th>
<th>W (IN)</th>
<th>PART NUMBER</th>
<th>LENGTH (IN)</th>
<th>FIGURE</th>
<th>W (IN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT1.5X4X10</td>
<td>4 3/32"</td>
<td></td>
<td></td>
<td>FT4X4X10</td>
<td>4 3/32"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT1.5X6X10</td>
<td>6 1/16"</td>
<td></td>
<td></td>
<td>FT4X6X10</td>
<td>6 1/16"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT1.5X8X10</td>
<td>8 3/32"</td>
<td></td>
<td></td>
<td>FT4X8X10</td>
<td>8 3/32"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT1.5X12X10</td>
<td>11 31/32"</td>
<td></td>
<td></td>
<td>FT4X12X10</td>
<td>11 31/32"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT2X2X10</td>
<td>2 1/8"</td>
<td></td>
<td></td>
<td>FT4X16X10</td>
<td>15 29/32"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT2X4X10</td>
<td>4 3/32"</td>
<td></td>
<td></td>
<td>FT4X18X10</td>
<td>17 7/8"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT2X6X10</td>
<td>6 1/16"</td>
<td></td>
<td></td>
<td>FT4X20X10</td>
<td>19 27/32"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT2X8X10</td>
<td>8 3/32"</td>
<td></td>
<td></td>
<td>FT4X24X10</td>
<td>23 3/4"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT2X12X10</td>
<td>11 31/32"</td>
<td></td>
<td></td>
<td>FT4X30X10</td>
<td>29 7/8"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT2X16X10</td>
<td>15 29/32"</td>
<td></td>
<td></td>
<td>FT6X8X10</td>
<td>7 7/8"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT2X18X10</td>
<td>17 7/8"</td>
<td></td>
<td></td>
<td>FT6X12X10</td>
<td>11 31/32"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT2X20X10</td>
<td>19 27/32"</td>
<td></td>
<td></td>
<td>FT6X16X10</td>
<td>15 29/32"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT2X24X10</td>
<td>23 3/4"</td>
<td></td>
<td></td>
<td>FT6X18X10</td>
<td>17 7/8"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT2X30X10</td>
<td>29 7/8"</td>
<td></td>
<td></td>
<td>FT6X20X10</td>
<td>19 27/32"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT2X32X10</td>
<td>31 21/32"</td>
<td></td>
<td></td>
<td>FT6X24X10</td>
<td>23 3/4"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. B-LINE FINISH SPECIFICATION:
 - ELECTRODEPOSITED ZINC
 - PRE GALV
 - FLAT BLACK
 - COMPUTER WHITE
 - GRAY
 - SS4

2. WIRE BASKET CABLE TRAY SHALL BE MADE OF HIGH STRENGTH STEEL WIRES AND FORMED INTO A STANDARD 2 INCH BY 4 INCH WIRE MESH PATTERN WITH INTERSECTING WIRES WELDED TOGETHER.
SNAP GROMMET IN PLACE TO RETAIN BASKET

SNAP GROMMET IN PLACE TO RETAIN THREADED ROD

- PART NUMBER: TRAPEZE SUPT2
- TRAPEZE CLIP INSTALLS FAST
- TRAY CAN BE RELEASED FROM SUPPORT TO ALLOW SIDE CABLE LOADING
- ACCEPTS 1/4" AND 3/8" THREADED ROD SIZES
- MATERIAL FINISH: PRE-GALVANIZED, BLACK POWDER COAT, CUSTOM POWDER COAT

TRAPEZE SUPT2

1.64

1.97

1.380

.390

1.24

1.64

1.97

00015639

TRAPEZE SUPT2

FLEXTRAY TRAPEZE SUPPORT

EQUIPMENT FURNISHED HAS BEEN FABRICATED IN ACCORDANCE WITH THIS DRAWING.
PART NUMBER: **FTSTLC**

- FINISH: ZINC, STAINLESS STEEL, CUSTOM COLORS
- ZINC FINISH IS UL CLASSIFIED
- TO INSTALL USE PLIERS OR SCREWDRIVER TO CLOSE TAB-LOCS
PART NUMBER: WASHER SPL KIT

UNIVERSAL BOLTED CONNECTOR.

MATERIAL FINISH:
ELECTROPLATED ZINC
BLACK ZINC
316 STAINLESS STEEL

INSTALLED VIEW
(BASKET NOT INCLUDED)

TOP VIEW

1/4"-20 X 1" STUD

STUDDED PLATE

WASHER PLATE

1/4"-20 SERRATED FLANGE NUT
PART NUMBER: 90 DEGREE KIT

FOR FAST ASSEMBLY OF 90 DEGREE TURNS AND TEE FITTINGS

INCLUDES TWO 90 DEGREE BARS & ATTACHMENT HARDWARE

MATERIAL FINISH:
- ELECTROPLATED ZINC
- BLACK POWDER COAT
- HOT DIP GALVANIZED
- 316 STAINLESS STEEL
- CUSTOM POWDER COAT

INCLUDED HARDWARE

- 1/4"-20 X 1" CARRIAGE BOLT (8 PC)
- 1/4"-20 SERRATED FLANGE NUT (8 PC)
- TOP WASHER (8 PC)
- 25 X .44 SLOT ON 1.00 CENTERS (11 PL)
- 90 DEGREE BAR (2 PC)
- 1/4"-20 X 1" CARRIAGE BOLT (8 PC)
- 1/4"-20 SERRATED FLANGE NUT (8 PC)
- TOP WASHER (8 PC)
- 25 X .44 SLOT ON 1.00 CENTERS (11 PL)
- 90 DEGREE BAR (2 PC)