Contents

Imagination
- 6 Undergraduate Communities that Live and Breathe Engineering
- 8 A Student’s Passion for Engineering: Sylvia Herbert
- 10 A Non-Traditional Veteran Student: Greg Scott
- 11 Why I Give: Robert Koerner, ’56 and ’63

Innovation
- 14 Research Highlights
- 16 The SEED of an Idea
- 18 Materials Day
- 19 Why I Give: Bill Mitchell, ’66

Impact
- 22 Where Are They Now
- 24 STEM in Local Schools
- 25 Why I Give: Andrew Pennoni, ’91
- 26 Our Commitment
- 28 Thank You
From the first day of class until graduation, our education prepares a new generation of engineers dedicated to discovery, and the application of technology to promote economic development and improve our quality of life.

Our educational mission requires more than the hard work of our students. It requires the active engagement and financial support of the College’s alumni and friends in industry and the world of private philanthropy.

In this booklet you will learn about the impact that a Drexel Engineering education has had on some of its students and graduates and how it has helped to solve some of society’s most pressing challenges. Most importantly, you will learn how you can help the College of Engineering build capacity, quality and state-of-the-art instruction.

Our needs are pressing. As technology advances rapidly, so does the College’s need to integrate the latest means and methods for teaching and research. Furthermore, it is crucially important to attract and retain the very best minds capable of great achievement.

I invite you to take a few moments to read the following pages as well as the College of Engineering’s 5-year Strategic Plan (Drexel.edu/engineering/about/plan). Join with us in investing in the future of engineering at Drexel University. Your commitment will advance our University and, through our students’ efforts, the future of the nation and the world.

Sincerely,

Joseph B. Hughes, Ph.D., P.E., DEE
Dean of Engineering
Distinguished University Professor
Since 1914, the College of Engineering has built a proud tradition of excellence in educating generations of engineers, inventors, problem solvers and entrepreneurs. These graduates have played a pivotal role in the major achievements of the past century, from the development of new technologies to safeguarding our environment.

Today, the College of Engineering is proudly the largest college at Drexel University, growing academically and becoming more demographically diverse with each passing year. Our continued commitment to our students will result in their carrying on in the footsteps of their predecessors, improving lives and solving the greatest challenges of the future.

Accreditations

» Middle States Commission on Higher Education

» ABET: Engineering Accreditation Commission (EAC)
8 Engineering Programs:
- Architectural
- Chemical
- Civil
- Computer
- Electrical
- Environmental
- Materials
- Mechanical

» ABET: Engineering Technology Accreditation Commission (ETAC):
 ■ Engineering Technology

» American Council for Construction Education (ACCE):
 ■ Construction Management

College of Engineering Degrees Offered

<table>
<thead>
<tr>
<th>Degree Program</th>
<th>BS</th>
<th>MS</th>
<th>PhD</th>
<th>Minor</th>
<th>Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Management</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Cybersecurity</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Management</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Engineering Technology</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entertainment Engineering</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Global Engineering</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering and Mechanics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Nuclear Engineering</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Management</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Property Management</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Real Estate</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Engineering</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems Engineering</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Telecommunications Engineering</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
At the College of Engineering, we believe in creating an environment for our students that unleashes creativity, an essential skill among the best and most successful engineers. Well-developed imaginations begin and end with structure and discipline that are introduced in our classrooms and labs through intricate skilled tasks, new experiences and complex relationships. At our best, we challenge our students to become engineers that imagine a better future for society...and then provide them with the skills to make that a reality.
ENROLLMENT

3,871 UNDERGRADUATE STUDENTS

1,055 GRADUATE STUDENTS

32.3% increase since 2009

16.2% increase since 2009

SCHOLARSHIPS

4 Engineering Students were offered

U.S. FULBRIGHT SCHOLARSHIPS

AY 2013-14

3.50 AVERAGE GPA for the last 5 years of incoming Freshmen

1250 AVERAGE SAT for the last 5 years of incoming Freshmen

DIVERSITY

Foreign students hail from 95 countries around the world

UNDER-REPRESENTED STUDENTS increased over the last 5 years:

25.6%

FEMALE STUDENTS increased over the last 5 years:

17.2%

THE CO-OP EXPERIENCE

- College of Engineering students employed on co-ops: 92.9%
- Average salary for a 6-month (26 weeks) paid co-op: $18,013
- Sampling of companies providing co-ops to CoE students: Comcast, Intel Corporation, GlaxoSmithKline, Johnson & Johnson, Lockheed Martin, Merck, National Security Agency, Philadelphia Water Company, Siemens, Thompson Reuters
- Students who agreed that their co-op experiences were useful to career development: 90%
You might create a module for a Rube Goldberg machine. Or lead a middle school science class. Or tour PECO’s green roof.

At Drexel University’s Engineering Learning Communities (ELC), students work on real-world problems in intimate settings with top-notch professors. The selective program for freshman offers a small college feel with all the advantages of a large, research-based university.

Taryn Francischetti, 19, an architectural engineering freshman who hails from Billings, Mont., built part of a Rube Goldberg machine along with other ELC classmates. The contraption of plywood, mousetraps and switches had numerous energy transfer events. A dump truck released its payload of marbles that released a ball bearing — and that turned an air pump that spun a windmill and so on.

“We built this from the ground up,” she says. “When we presented it and it worked, it was the best feeling ever.”

The ELC has grown to include 72 students who live in the same dorm and take classes together as well as engage around one of three themes: “Energy and Sustainability” that plans to partner with the A.J. Drexel Institute for Energy and the Environment; “The Expressive & Creative Interaction Technologies (ExCITe) Center” that included the Rube Goldberg project; and “Leadership and Engineering.” This last one is the newest addition for the 2014-15 school year that involves a tutoring component with a local school.

Students in the program tend to perform more successfully in college, data shows. For example, 93 percent of freshmen in the program return for the sophomore year.

Francischetti says her application to ELC was “the best decision I ever made. Everyone is involved. Everyone is focused on the same things as you are.”

The Rube Goldberg project was a perfect way to apply her classroom skills. “You come across problems,” Francischetti says. “You have to work around it. It creates a totally new way to think about things, and how to solve problems.”
The Engineering Learning Communities provide a unique living, social and academic environment that celebrates creativity, technology and design.

— Dr. Adam Fontecchio
Associate Dean for Academic Affairs
I’m so happy I went to Drexel. It’s very fast-paced and very challenging but it really prepares you for the real world.

— Sylvia Herbert
Mechanical Engineering, Drexel University
A Student’s Passion for Engineering

In five years at Drexel, Sylvia Herbert has traveled the world (Shanghai, Florence, Cape Town, Dubai), earned a dual B.S./M.S. in Mechanical Engineering while also dabbling in electrical, materials and chemical engineering research, and led the Pi Tau Sigma honor society to an outstanding chapter award.

Her secret? She reads her emails.

Obviously Herbert has smarts and an incredible work ethic. But she also takes advantage of anything sent her way. “We’re open to the idea of trying new things that might be a risk,” she says of Drexel students like her. “If it sounds like an interesting opportunity, we say, ‘Why not?’”

Herbert, a National Science Foundation fellow from Ardmore, Pa., will continue to explore new avenues as an electrical engineering Ph.D. student at the University of California, Berkeley. Through Drexel’s co-op program, she tried her hand at industry, working at Southco in suburban Philadelphia and designing products for manufacture. While Herbert says she enjoyed the experience, it reconfirmed her desire to pursue research, to work “on cutting-edge products that are completely new and solve challenges that are broad in scope.”

Her other co-ops have focused on research across disciplines. Through collaboration with Drexel’s ExCiTe Center, she has developed “smart” outfits for infants that use fabric antennae sensors to monitor respiration and protect against SIDS. She also has worked in the Nanophotonics Lab on liquid crystal waveguides with multiple applications.

Through Drexel’s honors program, Herbert has taken integrated courses, such as “The World’s Fairs in History” and “Celebrity Science” that led to trips abroad over breaks. “It was nice to supplement all the engineering classes….to remind me there is more to life than equations,” Herbert says with a smile. Somehow, she has time for hobbies, including playing the ukulele and, yes, video games.

As a woman in engineering, she says she has never doubted herself — in part because of the support of Drexel faculty members. Herbert takes pride in showing by example how well women can do in engineering, she says.

“At Drexel, they try very hard to give their students opportunities to take on leadership roles and have exciting experiences,” she says. “I feel well-prepared to take on the real world.”
When National Guard member and chemical operations specialist Greg Scott was deployed to Iraq, he often worked with local contractors and got an up-close look at the area’s infrastructure — an experience that piqued his interest in the civil engineering field.

When he returned stateside, the veteran from Newtown Square, Pa., took advantage of the GI Bill to complete his education at Drexel University. “I really enjoy structures, being able to see how things work, …how certain loads on different buildings can produce different outcomes,” says Scott, a senior civil engineering student. “It’s almost like a puzzle. I like to figure out the puzzle and put everything together to make something that can stand and remain for some time, but it’s something people will benefit from as well.”

At 31, Scott is married with two children. As he pursues the accelerated B.S./M.S. in Civil Engineering, he also works nights as a full-time process operator at Philadelphia Energy Solutions’ refineries — a result of his co-op experience there.

In fact, his summer internship allowed him to practice day in and day out what he learned in class. “I came back with a better understanding of and greater respect for what we do in the classroom,” he says. “It made me a better student.”

Drexel also is “a veteran-friendly school,” he says. “Its programs are outstanding.” Scott says he has benefited from superb advising and perks such as priority registration and access to a veterans’ lounge. “It’s been a tremendous experience.”
I came back with a better understanding of and greater respect for what we do in the classroom.

— Greg Scott, Veteran
Civil Engineering, Drexel University

Renowned civil engineer Robert M. Koerner ’56, ’63 has deep roots at Drexel University — ones that date to 1950, when he worked part-time as a high school student in the print shop at the college. That experience would shape the life of this 80-year-old founder and director emeritus of the Geosynthetic Research Institute in Ridley Township, Pa., and civil engineering professor emeritus at Drexel.

In 2001, he and his wife, Paula, founded the Koerner Family Foundation, which supports fellowships for outstanding graduate students in the College of Engineering. “We need more engineers,” he says. “If the country is going to progress, manufacturing is critical. Because of its co-op program, Drexel is the perfect place to produce the type of engineers who can kick-start the economy.”

Collectively, the Koerner family has been involved with the university for more than 100 years. “Drexel is embedded in my whole life,” he says. “That’s why we give.”
Innovation in engineering is the key to global competitiveness. Guided by research and exploration, the benefits of innovative engineering can be largely universal, affecting economic growth and providing a steady source of new ideas resulting in ingenuity and invention. The College of Engineering faculty and student researchers are committed to Drexel’s legacy of exploration, strategic leadership, and entrepreneurial risk-taking to find new and better ways of anticipating and addressing society’s needs and challenges.
NATIONAL ACADEMY OF ENGINEERING
This independent, nonprofit institution provides engineering leadership in service to the nation.

DREXEL UNIVERSITY’S COLLEGE OF ENGINEERING
HAS 5 ELECTED MEMBERS:

Dr. Eli Fromm | Dr. Robert Koerner | Dr. Alan Lawley
Dr. Chuck Pennoni | Dr. Arye Rosen

AWARDS

772
AWARDS
granted in the last 5 years

7
NSF
National Science Foundation Career Awards

47
Other Career-related Awards
including

22
PECASE
Presidential Early Career Award for Scientists and Engineers

$153,045,080
TOTAL RESEARCH EXPENDITURES
2010 – 2014

165
FULL TIME FACULTY

Research Highlights

The following are just a few of the engaging research projects that are changing how we address our mission of discovery, the application of technology and innovation.

1. An important class of energy storage devices known as supercapacitors offer a higher power density and longer cycle life than batteries. Drexel Engineering has developed a technique to fabricate carbon-based electrodes for supercapacitors using common salt, increasing performance while significantly reducing the overall cost of the process.

2. Drexel researchers traveled to the Ross Island region in southern coastal Antarctica to collect real-time online measurements of aerosol composition in an effort to capture extreme variability of meteorological conditions expected in maritime Antarctica.

3. Wearable technology remains a challenging task despite recent advances in sensing and fabrication techniques. Fabrics are bulky and require range-limiting tethers to computers or power sources. Drexel engineering researchers developed a soft sensory knitting technology that has not only reduced the bulk of the fabric, but is untethered resulting in a technology with unlimited possibilities in the military, medical and gaming industries.

4. Research was conducted to develop a response-contingent auditory and visual therapy device for infants and children with hemiplegic cerebral palsy. Children diagnosed with mild cerebral palsy may benefit by self-generated motor activity produced when they are reinforced to use their affected limb.

5. A Drexel professor and researcher is developing thin-film photovoltaic materials that could ultimately improve the performance of existing solar energy technology. The thin films would be about 85-90 percent cheaper to produce than current solar cells and significantly more efficient and cost effective at converting solar radiation into electrical energy than the solar technology on the market today.

6. Drexel researchers have devised a method for 3D printing tumors that may lead to a new paradigm for cancer research and for individual cancer therapies. Researchers can print out a living tumor model that can be used for studying their growth and response to treatment. This technology will give cancer researchers a better look at how tumors behave and a more accurate measure of how they respond to treatment.
In a remote, mountainous region of northern Thailand, 30,000 farmers seeded their fields with a back-breaking process they’d been using for over 700 years. On slopes that could literally be up to 70 degrees steep, farmers would jab the ground in random fashion, with someone following behind to throw rice in the holes. Many of these people, hunched over for many hours each day, developed chronic pain not to mention often being kicked in the face or hit by flying rocks.

Armed with a $100,000 grant from the Bill & Melinda Gates Foundation, interdisciplinary Drexel students collaborating in the SEED (Sustainable Engineering and Entrepreneurship for Development) Lab, worked to connect two cultures from halfway around the world and improve the lives of these rural rice farmers.

One of the first students brought on board was Marie LaPosta. LaPosta, now a mechanical engineer with Amtrak, was looking for a senior design project (a requirement for Drexel engineering majors) with social impact. “The tool that we devised would not have been easy for a villager to design, both from a knowledge and a resources standpoint,” she says.

“Before going [to Thailand], I didn’t think that our tool would be what they needed, or make an impact on their lives. The reality was very different. I saw that what we made was helpful to people where even a little help makes a big difference. I saw that they valued what we made, and it would be useful to them, and I wanted to do that again in my life.”

Collaboration is a key in the SEED Lab model. Despite major language, financial and geographical barriers, students know it is vital that any engineering solution be designed with, not simply for, the Thai farmers. Every year, a group of Drexel undergraduates returns to Thailand so that the original design of the planting and weeding tools can be adjusted to become more efficient and functional. The undergraduates, all of whom volunteer their time, try to improve on the previous group’s work. Other units across campus, including the departments of mechanical engineering; chemical and biological engineering; civil and environmental engineering; film and video; graphic design, and the School of Biomedical Engineering, Science and Health Systems, have contributed to the project in some way.

As an engineer, I can be an agent of positive change by using my skills in the right way.

— Marie LaPosta
Mechanical Engineering, Drexel University
Instant ice cream. Thermometers that change colors. Slime. Philly’s Materials Science and Engineering Day at Drexel University is all about cool-as-liquid-nitrogen demos that wow students and teachers from local schools and, more importantly, highlight the sciences.

“It’s really cool. You get kids from 5 years old to a sophomore in high school,” says Katie Van Aken, 24, a graduate student from New Hope, Pa., who has led demonstrations that show off the field of materials science. “They all have different levels of knowledge, but they all want to learn more.”

The second-year Ph.D. student in materials science is one of the many graduate students who staff the demos on the first Saturday in February for the annual event in its fourth year.

One of Van Aken’s favorites is the liquid crystal thermometer demo. Heat-sensitive liquid crystals on a card change colors depending on the temperature. The children get to make one at the event and then take it home to use. “They think it’s pretty cool,” she says. Parents (or is that grandparents?) often recall the popular mood rings that work on the same principle.

Another winner is liquid nitrogen ice cream. The children combine all the ingredients in ice cream — cream, vanilla and sugar — and then pour the ultra-cold liquid nitrogen over the concoction. Voila! The mixture “cools so much, it turns into ice cream,” Van Aken says. “Kids will knock other kids down to get to that table.”

The Materials Day began as a partnership with the University of Pennsylvania, the Franklin Institute and PBS that built upon interest generated by a NOVA television special. It attracts about 1,500 students, parents and teachers each year and requires about 150 volunteers for the more than 30 demos in the Bossone Research Center.

“I find it extremely enjoyable to show kids why science is fun,” says Van Aken, who was inspired to co-start a new program aimed at high school students called Science Saturdays. “I was lucky. I had a lot of mentors when growing up. I wouldn’t be here without that.”
William “Bill” Mitchell was determined to go to college, even though he was married, held a full-time job and had children.

Mitchell, 72, graduated in 1966 from Drexel’s Evening College with a bachelor’s degree in physics. In 1969, he founded the Environmental Tectonics Corporation (ETC) which provides training products and services to a variety of markets, including aviation, space, theme parks, emergency response, pharmaceutical and animal care.

When the College of Engineering asked Mitchell for support, he says he was happy to oblige. He has generously supported both the University and the College of Engineering over the years. He has established the William F. Mitchell ’66 SuperNOVA and the William F. Mitchell ’66 Special Opportunity endowed scholarship funds. As a major gift donor, he has a college laboratory and the Bossone building auditorium named in his honor.

“It was Drexel,” says Mitchell, “that gave me a chance to mature, to get the education I needed to succeed.”
The practice of engineering has an inherent impact on society. College of Engineering students are provided the curriculum and the experiences to support their intellectual growth as well as their perspective of the responsibility for informed, culturally-appropriate change. The achievements of our graduates are a direct reflection of their Drexel education. We provide the foundation on which they will consistently rely as they take on the world’s challenges.
Thank you very much for your generosity in establishing this scholarship. Your gift has shown me that there are people, such as you, that will reward others for their hard work. This scholarship has encouraged me to give back to my school when I am in your position. The overwhelming joy that I felt when I received this reward should be felt by other hard-working college students in the future. I would be delighted to be the one that makes them feel this way.

— Andrew Feldman, Milton Rosenberg Scholarship recipient, pre-junior in accelerated BS/MS program in civil engineering

I would like to take this opportunity to express my sincere gratitude upon receiving the Harry E. Muchnic Scholarship. It is difficult for me to put into words how much an award like this means to me. I support my own education, and this award is serving not only as a financial blessing, but also as an encouragement to me during my final months at Drexel University. I cannot thank you enough for your generous contribution to my education and, as cliché as it may sound, my dreams. It will not be put to waste, and will not be forgotten.

— Caitlin Gottier, Harry E. Muchnic Scholarship recipient, senior chemical engineering major

I am writing to you to express my sincere gratitude for selecting me to receive The Joseph and Shirley Carleone Endowed Fellowship for the 2013-14 academic year. I am thrilled to learn that I have been selected as a recipient of this honor and I am deeply appreciative of your support. It is because of your generosity that I am able to focus on my research studies. I will work hard to prove myself worthy of the award you have given me. I am looking forward to the day when I am able to help other students just as you have helped me.

— Han Hu, Joseph and Shirley Carleone Endowed Fellowship recipient, PhD candidate in mechanical engineering
Drexel University Alumni: WHERE ARE THEY NOW?

Chris Ferguson ’84

Captain Chris Ferguson ‘84 has soared to heights most only dream of ever reaching — literally. The retired U.S. Navy captain and NASA astronaut has logged 40 days in space and was commander of Space Shuttle Atlantis on its final mission in 2011. “I guess the lesson is, if you remain focused, and do your job well, you never know where you’re going to end up,” says Ferguson, 52 and a Philadelphia native with a B.S. in Mechanical Engineering from Drexel University.

The Navy ROTC graduate got his Navy Wings in 1986 and served as an F-14 Tomcat pilot with the famed Red Rippers of VF-11 on board the USS Forrestal supercarrier. “It was magnificent,” he says. “They call it the most dangerous four-acres on the planet.” In 1991, he completed an M.S. in Aeronautical Engineering from the Naval Postgraduate School. Seven years later, he was accepted into the Astronaut Corps, achieving a life-long dream. “There are only 500 people who have left the planet,” he says. “I think it’s pretty cool to be one of them. You come back, and you have a whole new perspective on what’s important.”

Ferguson, now director of crew and mission operations for Boeing’s Commercial Crew Program in Houston, has valued his ties to Drexel. An honorary degree recipient, he also has won numerous accolades (Drexel’s 2009 Engineering Leader of the Year, the Silver Dragon Award and induction into the College’s Alumni Circle of Distinction). Mostly, he tirelessly promotes the College of Engineering to all takers. Says Ferguson, “I am so very impressed every time I come back to Drexel.”
Linda M. Abriola ’76 was a pioneer from the start — the only woman in her civil engineering class of 60 at Drexel University. “In some respects, you felt you stood out,” she says. “I also had the benefits of some very fine professors who were very supportive of me back then.” Abriola was encouraged to pursue her Ph.D. (’83), which she did at Princeton University with a focus on water contamination. She began her career in academia at the University of Michigan, Ann Arbor, working in the new field of environmental engineering. Abriola stayed there nearly two decades and was the first woman at the University to be appointed to a named professorship in engineering. In 2003, she moved to Tufts University as its dean of engineering and also was elected to the prestigious National Academy of Engineering. Abriola was selected as Drexel’s 2013 Engineering Leader of the Year — the first woman awarded the honor. With 140 peer-reviewed published articles, she is one of the world’s foremost researchers in groundwater contamination and remediation.

Grateful for the career support she received as an undergraduate, Abriola serves as a mentor and sits on the advisory board of ELATE, a national program based at Drexel that helps to develop women faculty in engineering and applied sciences into leaders. “So many of our young women still don’t have the same opportunities as men,” she says. “I’ve tried to foster leadership skills and help them along to further their careers.”

The curiosity bug infected entrepreneur and CEO Stanley L. King ’73 from the earliest ages. Growing up in Johnstown, Pa., he wondered how things worked, built race cars and concocted experiments in his bedroom laboratory. “Energy was always an interest I had,” says King, whose B.S. in Mechanical Engineering from Drexel University included a concentration in thermal and fluid sciences. King, 64, was attracted to Drexel because of its reputation. “Drexel was the right school for me,” he says. “Drexel is a very practical school, and yet it’s rich in quality teaching and research. To me, it’s the best education a young person can get.”

After earning his master’s in mechanical engineering from the University of Akron (’77), he worked in energy for numerous years before starting S.L. King & Associates in 1996. The architectural and engineering firm based in Atlanta, Ga., is a leader in its field in the southeast and specializes in energy, transportation and the environment.

In 2012, King was named to the College of Engineering’s Energy and Environment Advisory Council and the following year, to the President’s Leadership Council. Through non-profit organizations and the Small Business Administration, he also has worked to encourage minority students to pursue the engineering profession. Drexel, he says, is uniquely positioned to advance this goal. “Because of its urban setting,” King says, “Drexel is a cornerstone in the community for achieving education excellence and development of young people, whether entrepreneurs, scientists or engineers, to really impact the community.”
To impress upon high schoolers the importance of cybersecurity, Drexel University graduate fellows involved in an innovative STEM program invite the teens to use their imaginations to develop solutions to problems in related topics.

One activity, for example, was a lesson in “how to prevent against hacking,” says fifth-year electrical engineering Ph.D. student Brandon Morton, 27, of Newark, Del., who also has a bachelor’s in computer engineering from the University of Maryland Baltimore County.

He is one of nine fellows involved with the four-year-old program with a mouthful title: Catalyzing STEM Education via the National Academy of Engineering’s Grand Challenges for Engineering, known as Drexel STEM GK12 for short. Funded through a $2.9 million National Science Foundation grant over five years, it connects graduate students with inner city high school science teachers and their students to develop hands-on curricular modules.

“It’s outreaching into the community and spreading the word about Drexel but also fostering new interest in STEM and pursuing STEM education,” says Jessica S. Ward, program manager for the Drexel STEM GK12 and director of operations for DragonsTeach.

Each fellow receives a stipend and spends about 10 hours a week on the program. Morton and other fellows also traveled to Kenya for two weeks to expose students there to hands-on projects and to learn to teach cross culturally. “Students over there were more traditional learners, facing the front of the classroom and listening to a lecture,” says Morton, who focused his lessons on his research field of entertainment technology. “We wanted to show them that engineering is more than just doing algebra problems. You can actually apply it.”

For him, Drexel STEM GK12 is “a cool little program,” he says. “What you’re doing actually matters.” He especially enjoys teaching high schoolers. “It keeps you young and connected. You get a chance to give back and get people excited about what you do.”
Community outreach to Philadelphia schools with STEM initiatives is in line with the University’s strategy of civic engagement.

— Jessica S. Ward
Program Manager, Drexel STEM GK12
Director of Operations, DragonsTeach

“STEM is a widely-accepted acronym for “Science, Technology, Engineering and Mathematics.” Recently, a movement to integrate “Art” has been proposed to modify the acronym to “STEAM.”

ANDREW PENNONI ‘91

A Division 1 lacrosse player at Drexel University, Andrew J. Pennoni ‘91 has supported his alma mater with generous gifts since he graduated with a B.S. in Architectural and Civil Engineering.

“I had a nice experience at Drexel, and I got a great education,” says Pennoni, regional vice president at Pennoni Associates, an engineering and design consulting firm based in Philadelphia. Pennoni donated to the capital campaign to improve Vidas Fields, where varsity sports play. His firm has supported the alumni golf outing since its inception 17 years ago — and Pennoni currently chairs the Drexel Athletics Golf Outing Committee.

But his commitment to Drexel and the College of Engineering is not limited to athletics. Recently, he established an endowed lecture series in the College. In addition, Pennoni Associates is a leader in co-op opportunities for Drexel students and employer of many Drexel graduates. Pennoni also serves on the President’s Leadership Council.

“My experience at Drexel was made possible, in large part, by people who supported Drexel before me, and I’m just helping to provide opportunities for people the same way they did for my classmates and me.”
Our Commitment
To The Rising Generation Of Engineers

The College of Engineering is committed to impacting society’s greatest challenges through boundary-spanning education, focused research and continuous innovation. To accomplish this, we must create a cohesive community—one that emphasizes service, recognition, respect and trust. With these as a foundation, we can face the future with confidence that strategic goals will be met and that the best possible engineering education may be attained at Drexel University.
To achieve the College of Engineering’s strategic vision, it is imperative that the College:

1. **ATTRACT & RETAIN THE MOST TALENTED FACULTY.** The achievement of the College’s ambitious strategic vision requires faculty members who will push the boundaries of knowledge and research while working closely with students to prepare them for a life of inquiry, commitment and service.

2. **CREATE STATE-OF-THE-ART FACILITIES AND LABORATORIES.** As technology advances, so must the College’s facilities. Providing well-equipped, modern facilities is crucial to creating innovative learning approaches and cutting-edge research that will impact the most pressing regional, national and global issues.

3. **INCREASE THE ENGAGEMENT OF ALUMNI WITH THE COLLEGE, SO THAT STUDENTS MAY BENEFIT FROM THEIR TALENTS, ACHIEVEMENTS AND EXPERIENCES.** Drexel alumni are a rich and diverse resource, adding depth and quality to the academic character of the College of Engineering. Alumni are involved on many levels, from volunteering and mentoring to providing co-ops in their organizations to investing in the College’s strategic plans.

We Need Your Help to Ensure the College’s Success

Making an investment in the College of Engineering is needed to provide the necessary resources to students and faculty. Primary opportunities to expand the impact of the College include:

Endowed Chairs, Professorships & Graduate Fellowships
Providing financial endowments to attract and retain faculty members of the highest caliber will enhance the student-centered experience, innovative research, and the College’s reputation. Higher education today requires such incentives to secure professors of the highest talent.

New & Enhanced Facilities
Whether through endowed funds that will provide for the continuous technological improvement of laboratories, classrooms, workspaces and buildings, or leadership gifts to provide for new facilities for a growing enrollment, a substantial and important impact can be made on the College of Engineering.

Endowed Student Scholarships & Programs
Scholarships offset tuition and other expenses of talented students with varying needs, enabling them to graduate successfully. Other endowed funds for student design projects, lecture series, clubs and other educational and social opportunities will enhance the student experience in perpetuity.

To explore how you can make a difference in the life and future of the College of Engineering, please contact the Dean of Engineering’s office at **215.895.2210**.
THANK YOU

It takes a significant commitment to develop the next generation of world-class engineers. Our students will graduate from Drexel and be asked to address global challenges that will require innovative thinking, a collaborative spirit, and an entrepreneurial drive. They will be motivated to succeed and to lead.

It is incumbent upon us to prepare these young people with the best, most comprehensive education possible.

Thank you for joining us to make their academic experience one that will not only serve the student…but also, the world.