
Design Rule Hierarchy and Analytical Decision Model Transformation

Sunny Huynh, Yuanfang Cai, and Kanwarpreet Sethi

Dept. of Computer Science

Drexel University

Philadelphia, PA, 19104

{sunny, yfcai, kss33}@cs.drexel.edu

Abstract

We present two contributions to help make design rule

theory operable in software engineering practice. First,

we develop an approach to automatically transform a de-

sign, expressed in the prevailing unified modeling language,

into an augmented constraint network (ACN), from which

a design structure matrix (DSM) can be generated. Using

ACNs formalizes design rule theory and using DSMS en-

ables option-based reasoning. Second, we design an algo-

rithm to derive a design rule hierarchy from an ACN, re-

vealing the impact scope of each design rule and identi-

fying the independent modules. This hierarchy defines an

order in which decisions can be made to maximize task par-

allelism, constrained by the dependency structure of the ar-

chitecture. We evaluate the accuracy and scalability of our

approaches using both small, but canonical, systems and

the open-source Apache Ant system.

1. Introduction

Baldwin and Clark’s design rule theory [4] and the sup-

porting design structure matrix (DSM) [4, 13, 31] model

have been used to explain how modularity in design creates

value in the form of options. Design rules (DRs) are defined

as stable interface decisions. They decouple otherwise cou-

pled decisions, thus creating independent modules. Each

module supports individual search and replacement with

better alternatives. Our prior work presented the augmented

constraint network (ACN) that formalizes the design rule

theory and enables automatic generation of semantically-

rigorous DSMs [8, 10]. We refer to both DSM and ACN as

analytical decision models.

Researchers showed that the theory and the models are

useful in software design analysis. Sullivan et al. [32],

Lopes et al. [22], and Cai et al. [9] used the theory and

the models to precisely capture Parnas’s information hiding

criterion and to quantitatively compare design alternatives.

Sangal et al. [28], MacCormack et al. [23], and LaMantia

et al. [20] used source code reverse-engineered DSMs to

reveal and compare large-scale software modular structure,

and to explain software evolution phenomena and modular-

ization activities.

However, there are several obstacles that hinder software

designers from exploiting the power of design rule theory

and analytical decision models. First, manually construct-

ing design-level DSMs has been shown to be error-prone

and subject to ambiguity [8]. In addition, ACN modeling

requires identifying and expressing logical relations among

design decisions. For software engineers, who are trained to

use prevailing models such as UML, constructing these an-

alytical decision models and applying the design rule theory

present a steep learning curve.

Second, identifying independent modules is not trivial

in large-scale systems. Consistent with Parnas’s defini-

tion [26], Baldwin and Clark [4] define a module as an in-

dependent task assignment, which consists of a set of deci-

sions that can be made together; decisions in separate mod-

ules are made in parallel with each other. However, this

definition is not always consistent with the concept of mod-

ule that software engineers use; these modules often stands

for classes, aspects, or components that are not always inde-

pendent. The difficulty of identifying independent modules

is directly related to the difficulty of differentiating design

rules in terms of their impact scope. According to its defi-

nition, all classes with a public interface are providing a de-

sign rule. However, the impact scope of an interface varies

dramatically. For example, an abstract class with many de-

scendants can be more critical than an interface that is only

used by a few classes.

We present an approach to address each of these prob-

lem. First, we develop an approach to automatically trans-

form a UML class diagram into an ACN. Second, we de-

sign an algorithm to identify independent modules from an

ACN, and to cluster the design rules into a design rule hier-

archy according to their impact scopes, which can be visual-

ized through a DSM. We evaluate our UML transformation

and DR hierarchy algorithm using both small systems and

the open-source Apache Ant [3].

Our design rule hierarchy is different from other well-

known hierarchical structures, such as the “uses” hierarchy

defined by Parnas [27] and hierarchies defined according to

conceptual domains [7,11]. For example, if a decision A in

a GUI layer is the only decision to depend on a decision B

in the business layer, then our DR hierarchy algorithm will

aggregate A and B into a single independent module be-

cause these decisions can and should be made and changed

together. Within each layer of our hierarchy, modules par-

tition the decisions, such that each module can be decided

in parallel with other modules within the layer. Thus, this

hierarchy shows how to assign tasks for maximum work to

be done in parallel.

The rest of this paper is organized as follows. Section 2

gives an overview of our modularity analysis framework

and Section 3 illustrates our approach with a small example.

Section 4 describes the formalization of our UML transfor-

mation and DR hierarchy clustering algorithm. Section 5

presents our experiments on KWIC and Apache Ant. Sec-

tion 6 discusses our results and Section 7 addresses related

work. Section 8 concludes.

2. Framework

Figure 1 shows our overall modularity analysis frame-

work and how the approaches we present in this paper fit

into it. The framework takes a UML model as input and

generates a DSM clustered with our design rule hierarchy.

ACN Decomposer is an algorithm that takes an ACN and

decomposes it into a set of sub-ACNs according to for-

malized design rules, as presented by Cai et al. [10]. Cai

et al. [10] also presented an algorithm, represented as De-

pendency Analzyer in the figure, to derive a pairwise de-

pendence relation from ACNs. The DSM Generator gen-

erates DSMs from the pairwise dependence relation and a

selected clustering method. The DSM model can then be

used to conduct a number of modularity and evolution anal-

yses. We use the implementation of these algorithms from

the Simon [8, 10] tool.

Our contribution in this paper are the two highlighted

processes. UML to ACN is a program that converts a UML

model into an ACN model. Design Rule Hierarchy is an

algorithm that takes two inputs: (1) a set of sub-ACNs de-

composed by ACN Decomposer and (2) the pairwise depen-

dence relation derived from the ACN, and outputs a DSM

clustered by the DR hierarchy.

3. Overview Through an Example

Figure 2 shows a UML class diagram of a small sys-

tem for building a maze in a computer game; this system

UML Class

Diagram UML to ACN
ACN

Model

ACN

Decomposer
sub-ACN

Models

Design Rule

Hierarchy

Dependency

Analyzer

DSM Model

Reclustered

DSM Model
PWDR

DSM

Generator Modularity

Analysis [4,10]

Figure 1. Modularity Analysis Framework

uses the abstract factory pattern, as described in Gamma

et al. [15]. A maze is defined as a set of rooms; a room

knows its neighbors, such as another room, a wall, or a

door to another room. The class MapSite is the common

abstract class for all the components of the maze. The UML

class diagram shows two variations of the maze game sup-

ported by the abstract factory pattern: an enchanted maze

game (EnchantedMazeFactory) with a door that can only be

opened and locked with a spell (DoorNeedingSpell), and a

room that has a magic key (EnchantedRoom); and a bombed

maze game (BombedMazeFactory) that contains a room with

bomb set in it (RoomWithABomb) and a wall that can be dam-

aged if a bomb goes off (BombedWall).

UML modeling is not designed to aid independent task

assignment. For example, if a team member is assigned

the task of implementing the enchanted maze game, he/she

has to examine the diagram to determine all the classes that

have to be designed. In addition, he/she must be aware of

other classes, such as MapSite, that the enchanted maze

game components must interact with. These classes may

be designed by other team members, creating dependencies

between tasks. UML models can scale to where tracing and

understanding the relations among the classes, in order to

determine these dependencies, can become difficult [12].

The following subsections describe design rule theory,

analytical decision models, and the DR hierarchy. We de-

scribe how a UML class diagram can be converted to an

ACN and a DSM, and how to derive a DR hierarchy.

3.1. Decisions Models and DR Hierarchy

Design Structure Matrix Figure 3(a) shows a design

structure matrix (DSM) automatically generated from the

MapSite

DoorWall Room Maze

Enchanted
Room

MazeFactory

Enchanted
MazeFactory

Door
NeedingSpell

BombedWall
RoomWithA

Bomb

Bombed
MazeFactory

Figure 2. Maze Game UML Class Diagram

UML diagram in Figure 2. A DSM is a square matrix in

which rows and columns are labeled with design dimen-

sions where decisions must be made, and a marked cell

models that the decision on the row depends on the column.

In this DSM, each class is modeled using two design dimen-

sions: an interface and an implementation. For example, the

cell in row 11, column 2 indicates that the implementation

of the Room class (Room impl) depends on the interface of

the MapSite class (MapSite interface).

Blocks along the diagonal represent aggregated design

decisions. Figure 3(a) shows two levels of such aggregation.

Each block at the inner level represents a module, which is

an independent task assignment. At the outer level, each

block represents a layer in our DR hierarchy. We describe

the significance of these layers in the following paragraphs.

Design Rule Design rules are captured by a DSM

using asymmetric dependencies that decouple modules.

For example, the Room impl variable influences both

BombedRoom impl and EnchantedRoom impl, but is not in-

fluenced by them. Therefore, once the common room char-

acteristics are implemented by the parent Room class, the

BombedRoom impl and EnchantedRoom impl only need to

implement their own special features; they need not know

the existence of each other. As a result, the Room impl

serves as a design rule that decouple the implementations

of EnchantedRoom and BombedRoom.

Design Rule Hierarchy The DSM shown in Figure 3(a)

is clustered into a 4-layer DR hierarchy. The four outer

groupings in Figure 3(a) show the layers in which tasks can

be completed in parallel; the clusters within each layer only

depend on the decisions within the layers to the left of it

in the DSM. The tasks within each layer of the DSM can

be completed in parallel because there are no inter-module

dependencies within each layer.

The first layer identifies the design rules that are most in-

fluential and should remain stable. In Figure 3(a), the first

layer consists of the variables Maze interface and Map-

Site interface. Changing these design rules can have

drastic effects on a system. For example, changing a public

method signature in the MapSite class may require changes

to almost all parts of the software (as shown by the numer-

ous marks under column 2).

The second layer, from row 3 to row 6, contains the

decisions that only depend on the top layer decisions and

can be made in parallel. Each cluster within the layer con-

tain the decisions that should be made together. For exam-

ple, the DSM shows that the MazeFactory interface and

MazeFactory impl decisions should be made together. Al-

though MazeFactory and DoorNeedingSpell interface do

not belong to the same layer of an inheritance hierarchy,

they are in the same DR hierarchy layer because once the

DRs in the previous layer are determined, these decisions

can be made at in parallel.

The last layer of the hierarchy identifies the independent

modules, consistent with Parnas’s definition. Not only can

these modules be designed and developed independently,

but they can also be swapped out for different implemen-

tations without affecting the rest of the system. Although

BombedWall impl and Wall impl belong to different layers

of the inheritance hierarchy, they are clustered into the same

module. Even though Wall impl is a parent class, it does

not decouple multiple modules, and is only used by the

BombedWall impl. As a result, Wall impl is not a design

rule in the current system, and the engineers of these two

classes can work together for a better Wall implementation

without worrying about unwanted side effects.

Hence, the DR hierarchy-clustered DSM identifies in-

dependent modules and reveals how to schedule tasks for

maximum work to be done in parallel. Manually gener-

ating, marking and clustering a DSM, even at this size, is

not practical. The DSM shown in Figure 3(a) is generated

from an augmented constraint network translated from the

UML class diagram, and automatically clustered using our

DR hierarchy algorithm. Next, we describe the augmented

constraint network.

Augmented Constraint Network The augmented con-

straint network (ACN), developed by Cai et al. [8, 10], for-

malizes the concept of design rules and enables automatic

DSM derivation. Figure 3(b) shows part of the ACN derived

from the UML diagram show in Figure 2 and Figure 3(a)

shows the corresponding derived DSM. An ACN consists of

a constraint network that models design decisions and their

relations, a dominance relation that formalizes the concept

of design rule, and a cluster set in which each cluster repre-

sents a different way to partition a design.

(a) DSM

1. MapSite_interface : {orig, other};

2. MapSite_impl : {orig, other};

3. Room_interface : {orig, other};

4. Room_impl : {orig, other};

5. Maze_interface : {orig, other};

6. Maze_impl : {orig, other};

7. Room_impl = orig =>

 MapSite_interface = orig;

8. Room_impl = orig =>

 MapSite_impl = orig;

9. Maze_impl = orig =>

 Room_interface = orig;

10. (MapSite_impl, MapSite_interface);

11. (Room_impl, Room_interface);

12. (Room_interface, MapSite_interface);

(b) Partial ACN

Figure 3. Maze Game Analytical Decision Models

A constraint network consists of a set of design vari-

ables, which model design dimensions or relevant environ-

ment conditions, and their domains; and a set of logical con-

straints, which model the relations among variables. In Fig-

ure 3(b), lines 1–6 are the partial maze game variables, and

lines 7–9 are some sample constraints. For example, line 9

models that the implementation of the Maze class assumes

that the interface of the Room class is as originally agreed.

We augment the constraint network with a binary dom-

inance relation to model asymmetric dependence relations

among decisions, as shown in lines 10–12. For example,

line 11 indicates that the decision for how to implement the

Room class cannot influence the design of its interface; in

other words, we cannot arbitrarily change the Room class’s

public interface to simplify the class’s implementation be-

cause other components may rely on that interface.

From the constraint network and the dominance rela-

tion, we can formally define pairwise dependence relation

(PWDR): if (x, y) ∈ PWDR then y must be changed in

some minimal restoration of consistency to the constraint

network which was broken by a change in x. We have

shown that a DSM can be automatically derived from an

ACN [8, 10] where the matrix is populated by the PWDR

and the columns and rows are ordered by a selected cluster

from the cluster set.

3.2. Converting UML to ACN

The basic idea in converting UML to ACN is to formal-

ize each UML relation, such as generalization and associ-

ation, using a constraint network and dominance relation.

We use the generalization relation between the Mapsite and

Room classes as an example.

To translate a UML relation into a constraint network,

we first transform a class into two variables; the interface

variable ends with interface and the implementation vari-

able ends with impl. Then, we model the relations among

classes and interfaces as logical constraints. For example,

the Room class inherits from the MapSite class so a change in

either the interface or implementation of MapSite will influ-

ence the implementation of Room. In other words, the imple-

mentation of Room makes assumptions about the interface

and implementation of MapSite. Lines 7–8 in Figure 3(b)

are the logical expressions translated from these relations.

Although a change in the implementation of a parent class

implicitly propagates to its children and a child’s code may

not need to be changed, the designer should be aware of this

implicit change to avoid unexpected side effects.

To generate the dominance relation, we dictate that in-

terfaces dominate implementations. We also decide that the

implementation decision of a parent class dominate the im-

plementation decision of a child because the parent may

have other children. Forcing a parent class to change due

to a change in a child may cause unwanted side effects in

other children.

The ACN model generated from the maze game UML

class diagram consists of 24 variables, 50 logical expres-

sions, and 49 pairs of dominance relations. Figure 3(a)

shows the DSM generated from this ACN, and clustered

into a DR hierarchy.

3.3. DR Hierarchy Clustering

Our motivation in generating a DR hierarchy stems from

the need to identify independent task assignments within a

design. We first need to identify all decisions needed for

each task. Then we identify which of these decisions are

shared by other tasks and which can be made independently

and concurrently. The first step is done by our prior work

of decomposing a ACN into a set of sub-ACNs [10]. We

present an algorithm to address the second issue and build

on the ACN decomposition approach.

Identify Decisions Needed by a Task Cai et al. [10] in-

troduced an algorithm to automatically decompose an ACN

model into sub-ACNs; each sub-ACN was shown to contain

a set of decisions needed to accomplish a particular task.

We refer to this algorithm as the Decompose-Modules algo-

rithm. The basic idea is to model the constraint network part

of an ACN using a directed graph. In this graph, each vertex

represents a design variable. Two variables are connected if

and only if they appear in the same constraint expression.

Then the edges of the directed graph are removed using the

dominance relation of the ACN: if A cannot influence B, then

the edge from A to B is removed from the graph. We then

compute the condensation graph of this graph. Figure 4(a)

shows a partial maze game condensation graph generated

from the maze game ACN. Note that the edge directions

in the graph may seem counter-intuitive. This is because

the edges do not represent the direction of dependence but

rather the direction of possible influence. In other words, if

an edge (u, v) exists in the graph then a change in the de-

cision for variable u may potentially influence the decision

on variable v.

To generate sub-ACNs, we put all the variables along

the paths ending with the same minimal elements into a

sub-ACN with the relevant subset of constraints, domi-

nance relation and cluster set. As a result, the ACN is

decomposed into a set of sub-ACNs that can be solved

individually. We observe that each minimal element of

the condensation graph represents a feature, and all the

chains ending with a minimal element contain all the de-

cisions needed to realize the feature. For example, Fig-

ure 4(a) shows that one of the sub-ACNs will contain

the variables BombedWall impl, BombedWall interface,

Wall interface, and MapSite interface. This sub-

ACN contains all the decisions needed to implement the

BombedWall impl feature.

Simply identifying all the decisions needed for a fea-

ture does not guarantee that the task can be imple-

mented or changed independently because some of the

decisions may be shared by other tasks. For example,

the BombedWall impl sub-ACN contains decisions, such as

MapSite interface, that cannot be made or changed inde-

pendently because are shared by other tasks, as shown by

the overlapping variables in the condensation graph. We

differeniate the sub-ACNs in Figure 4(a) with different line

styles and label them as s1, s2, s3 for illustration.

Identify Shared Decisions Our goal is to identify a hi-

erarchy from the condensation graph, which is generated

as a by-product of the Decompose-Modules algorithm, and

further decompose these sub-ACNs into independent tasks.

We call this hierarchy the design rule hierarchy because the

hierarchy is determined by the design rules, formalized as

the dominance relation of the ACN.

Intuitively, our algorithm identifies each region of inter-

section in the condensation graph and separates each into

an individual group. For example, there are two regions of

intersection in Figure 4(a). In the intersection s1 ∩ s2 ∩ s3,

MapSite interface is shared by all three sub-ACNs so we

create a new module exclusively consisting of it. Since the

variable in this intersection is shared by all the sub-ACNs,

its development must be completed first. The other region

of intersection, between s2 and s3, contains Room inter-

face so we create a new module consisting of it. Similarly

as before, since s2 and s3 share this variable, it must be de-

signed before the design of the concrete Room classes. Since

s2 and s3 no longer share any variables, they are identified

as independent tasks that can be designed in parallel. Fig-

ure 4(b) shows the hierarchy our algorithm produces from

Figure 4(a) after aggregating these intersections into sepa-

rate modules.

Since the resulting graph after applying this algorithm

is directed acyclic, we can apply a modified breadth first

search of the vertices and get a partial ordering. In other

words, if we complete the tasks in Figure 4(b) from the top

down, then we will not have any issues with waiting for de-

pendencies to be completed. Figure 3(a) shows the DSM

of the full maze game example in which the variables are

clustered according to the result of our algorithm. All the

dependencies in the DSM are either below the diagonal or

within the inner groups. Sangal et al. [28] refer to this as

being in block triangular form. As we will prove in Sec-

tion 4, our algorithm always produces a clustering that puts

a DSM in block triangular form.

4. Formalization

In this section, we formalize of UML-to-ACN transfor-

mation and the design rule hierarchy clustering algorithm.

4.1. UML Transformation

For the sake of space, we only present the ACN for-

malization of UML generalization relation. Our previous

work [17] details the formalization of additional UML re-

lations. Table 1 shows a generalization relation depicted in

s
1

s
2

s
3

(a) Partial Condensation Graph (b) Partial Hierarchy Graph

Figure 4. Maze Game Decomposition Graphs

UML, in which A is the general element and B is the specific

element.

UML Augmented Constraint Network

A

B

Constraint Network:

B impl = orig => A interface = orig

B interface = orig =>

A interface = orig

B impl = orig => A impl = orig

Dominance Relation:

(B impl, A interface)

(B impl, A impl)

(B interface, A interface)

Table 1. Generalization

Since B inherits from A, the decision on A’s interface

dominates and influences both B’s interface and implemen-

tation, as modeled using the first two logical constraints and

first two dominance pairs shown in the table. The imple-

mentation decision of A also influences the implementation

of B as expressed in the third constraint. A impl also domi-

nates B impl because a change in B’s implementation should

not force changes in A’s implementation, which may be in-

herited by other classes. The dominance relation is con-

structed accordingly.

4.2. Design Rule Hierarchy Clustering

In this subsection we formally define the design rule hi-

erarchy, present the DR hierarchy algorithm, prove its cor-

rectness, and analyze its complexity. A DR hierarchy is a

directed acyclic graph (DAG) where each vertex models a

task; each task is defined as a set of design decisions that

should be made together. Edges in the graph model an “as-

sumes” relation: an edge (u, v) models that the decision v

assumes decision u. Based on ACN modeling, a change in

the choice for u may cause a change in the choice for v. The

layers within the DR hierarchy obey the following rules:

• Layer 0 is the set of tasks that assume no other deci-

sions.

• Layer i (i ≥ 1) is the set of all tasks that assume at least

one decision in level i− 1 and assume no decisions at

a layer higher than i − 1. Within any layer, no task

assumes any decisions within another task of the same

layer. Hence, the tasks within the same layer can be

designed independently and in parallel.

• The highest layer is the set of independent modules.

No decisions outside of these modules makes assump-

tion about any decisions within theses modules.

4.2.1. DR Hierarchy Algorithm

Our DR hierarchy algorithm starts by identifying all the de-

cisions needed for a task using the Decompose-Modules al-

gorithm created by Cai and Sullivan [8, 10] to decompose

a ACN into sub-ACNs. Decompose-Modules takes as in-

put a directed graph G (representing the constraint network)

and the dominance relation pairs. It creates from G a con-

densation graph C, and outputs a set of sub-ACNs S. Our

algorithm takes both C and S as input and outputs a cluster-

ing that conforms to the formal definition of DR hierarchy.

Figure 5 contains the pseudocode of our algorithm.

As stated in Section 3, intuitively, our algorithm sepa-

rates each region of intersection of the sub-ACNs into a

separate cluster. To identify which region a vertex of C

belongs to, we assign to each vertex an identifying bit-field

of |S| bits (represented by the integer region in the pseu-

docode). For each sub-ACN si ∈ S, if a vertex is contained

in that sub-ACN then the i-th bit of its bit-field will be set

to 1. For example, in Figure 4(a), Room interface is con-

tained in sub-ACNs s2 and s3 so it would have an identify-

DECOMPOSE-HIER(C, S)

1 create hash table T

2 for each v ∈ V [C]
3 do region← 0
4 for each s ∈ S

5 do region← region× 2
6 if v ∈ s

7 then region← region + 1
8 T [region]← T [region] ∪ {v}
9 create graph H

10 V [H]← items in T

11 for each (u, v) ∈ V [H]× V [H]
12 do if {(i, j) ∈ E[C] | i ∈ u ∧ j ∈ v} 6= ∅
13 then E[H]← E[H] ∪ {(u, v)}
14 return H

Figure 5. Algorithm Pseudocode

ing bit-field of 110 and Wall interface is only contained

in sub-ACN s1 so it would have a bit-field of 001.

After identifying regions, we build a new graph H in

which each vertex represents a region. The final for-loop in

the pseudocode populates the edges of H based on edges in

the condensation graph C. The graph H contains the hierar-

chical structure of tasks based on the “assumes” relation. To

derive the DR hierarchy clustering from H , we first isolate

the independent modules, then perform a modified breadth-

first search (BFS) on the graph. The modification is that a

vertex is not explored until all its incoming neighbors have

been explored. By using BFS we can explicitly identify the

layer that each element belongs to.

4.2.2. Proof of Correctness

To show that our approach correctly finds a hierarchical

structure of a software design, we prove Theorem 1 by con-

tradiction. To simplify this proof, we first prove Lemma 1.

Lemma 1. If vj , . . . , vk is a path in the condensation graph

C, then for any sub-ACN s ∈ S if vk ∈ s then vj ∈ s.

Proof of Lemma 1. Let u be a minimal element in C such

that there is a path vk ; u (without loss of generality, as-

sume that a path can consist of a single vertex if vk = u).

There must be at least one unique u ∈ C because C is a

DAG. The Decompose-Modules [8, 10] algorithm builds a

sub-ACN from u by putting all vertices that are connected

to u in the sub-ACN. Since vk is connected to u, it is in the

sub-ACN; since vj is connected to vk and vk is connected

to u, vj is also in the sub-ACN.

Theorem 1. The hierarchy graph H is a DAG.

Proof of Theorem 1. Since the input condensation graph C

does not contain any cycles, the only way that a cycle can

be formed in H is by the clustering of vertices of C. For

example, if a simple path p = v1, v2, . . . , vk exists in C,

and a vertex is created in H containing v1 and vk then a

cycle would be formed. We assume by contradiction, that

v1 and vk are clustered together in H . Then by definition

that for all input sub-ACNs s ∈ S, v1 ∈ s iff vk ∈ s. For a

cycle to be formed, at least one vertex in v2, . . . , vk−1 must

not be clustered with v1 and vk; let vi be this vertex. If vi is

not clustered with vk then there exists at least one sub-ACN

s′ ∈ S such that one, but not both, of vi and vk is in s′. We

consider each case separately.

• vk ∈ s′ ∧ vi 6∈ s′

Since vi is in our path p, there exists a path vi ; vk.

By Lemma 1, if vk ∈ s′ then vi must also be in s′.

Hence, this scenario never occurs.

• vk 6∈ s′ ∧ vi ∈ s′

Since vi is in our path p, there exists a path v1 ; vi.

By Lemma 1, if vi ∈ s′ then v1 must also be in s′

but this contradicts our original assumption. The con-

tradiction occurs because we assumed that for all sub-

ACNs s ∈ S, v1 ∈ s iff vk ∈ s, but this scenario would

have vk 6∈ s′ but v1 ∈ s′.

Therefore, v1 and vk cannot be clustered together to form

a cycle in H . This proof can easily be extended to show that

cycles cannot be formed by clustering together ends of mul-

tiple paths. For sake of space, we do not present that here.

Since the graph is a DAG, we guarantee that the correspond-

ing DSM will be clustered into block triangular form.

4.2.3. Complexity Analysis

To show the running time for our algorithm we first bound

the size of its inputs. All |V [C]|, |S|, and |V [H]| are

bounded by the number of variables in the ACN |V | because

each vertex or sub-ACN must contain at least one variable.

From this, we know that each of the first two for-loops of

our algorithm will run in Θ(|V |) times and the last for-loop

runs in Θ(|V |2) time. Breadth-first search runs in linear

time so the total running time of our algorithm is Θ(|V |2).

5. Preliminary Evaluation

In this section, we present our preliminary evaluation

strategy and results for both the UML transformation ap-

proach and the design rule hierarchy algorithm.

5.1. UML Transformation

The purpose of our UML transformation evaluation is to

assess (1) if the translated ACN/DSM model can faithfully

capture the dependence relations among classes determined

by the UML diagram; and (2) if the approach can scale to

the size of a real project.

5.1.1. Accuracy Assessment

Our strategy to achieve the first goal is to compare the DSM

that is derived from the UML class diagram with the DSM

that is reverse engineered from source code. We use the

Lattix [21] tool to derive the source code DSM. This eval-

uation is under the premise that the implementation con-

firms to the design. Throughout this section, we refer to

the UML-translated DSM as the design DSM and the re-

verse engineered DSM as the source DSM. We answer the

following evaluation questions through the comparison: (1)

can the design DSM pick up all the dependencies picked up

by the source DSM? (2) what causes the discrepancy be-

tween them, if any?

We select a small, but canonical, system to answer these

questions. A small system is used so that we can manually

analyze any DSM differences. A canonical system is used

to ensure the correctness of the UML diagram and imple-

mentation. The evaluation is valid as long as all the UML

relations are covered. The subject we select is the maze

game used in design pattern book of Gamma et al. [15].

The authors of the book provided an implementation so we

are assured that it confirms to the UML diagram.

Figure 6 shows the merged design and source DSMs for

the maze game to highlight their differences. To make the

two DSMs comparable, we collapse each pair of interface

and implementation variables of each class into a single

variable in the design DSM. After this clustering, the two

DSMs have the same set of variables so that we can overlap

them and show the differences. The figure shows that the

design DSM has a superset of dependencies of the source

DSM. The dependencies with a dark background are those

which the design DSM produced but the source DSM did

not. The differences fell into two categories:

1. The dependencies with a dark background and an “x”

mark are due to our approach’s ability to explicitly re-

veal indirect dependencies. For example, the design

DSM shows a dependency from EnchantedRoom to

MapSite. Although EnchantedRoom derives from Room,

rather than MapSite directly, changes to MapSite could

require a change to both Room and EnchantedRoom.

For example, if a public method signature is changed

in MapSite and EchantedRoom overrides this method,

then its method would also need to be updated.

2. The dependencies indicated by a dark background and

an “o” mark are due to our approach’s ability to ex-

plicitly reveal implicit dependencies. For example,

our design DSM shows that BombedMazeFactory de-

pends on Door because although BombedMazeFactory

may not have explicitly overridden the method to

create a Door from MazeFactory, there was an im-

plicit assumption that Door stay as originally agreed.

BombedMazeFactorymay not have overridden the Door

creation because it assumed that all doors could be

opened. But if the default behavior of opening a Door

is changed, then the BombedMazeFactory may need to

change. We explicitly show this dependency in order

to prevent unexpected side effects as such.

We can conclude from the experiment that the UML-

translated design DSM faithfully picks up the dependencies

determined by the UML class diagram, including both im-

plicit and indirect dependencies.

Figure 6. Maze Game Clustered DSM

5.1.2. Scalability Assessment

To evaluate the scalability of the approach, our strategy is to

apply it to a large-scale UML model. Due to the difficulty of

finding a publicly available UML model for a real project,

we reverse engineered a UML class diagram from the open-

source Apache Ant system [3], version 1.7.0. Our previ-

ous work detailed the reverse engineering process [17]. The

Apache Ant UML model contains 626 classes and inter-

faces, and over 3000 inter-component relations. We trans-

form it into an ACN with 1200 variables and 4400 con-

straints. Figure 7 shows part of the Apache DSM we derived

from the ACN. The full DSM is too large to fit in the paper,

but can be viewed at the first author’s website1. Our tool

took 15 minutes to perform the transformation, showing the

feasibility of the approach for real projects.

5.2. Design Rule Hierarchy Clustering

Our evaluation goal in assessing the DR hierarchy algo-

rithm is to determine (1) if the DR hierarchy algorithm can

identify independent modules and how the design tasks can

be partitioned to maximize parallel work; and (2) if the ap-

proach can scale to the size of a real project.

1http://rise.cs.drexel.edu/˜sunny/papers/icse2009 ant.xlsx

Figure 7. Partial Apache Ant DSM

5.2.1. Accuracy Assessment

Our strategy is to compare the computed DR hierarchy clus-

tered DSM with a previously validated DSM model. Given

an existing DSM in which the design rules are manually

identified and the modules are manually clustered, we an-

swer the following evaluation questions through the com-

parison: (1) does the DR hierarchy-clustered DSM identify

the same set of DRs and independent modules? and (2) if

not, what causes the discrepancy between them?

We choose the DSM models constructed by Sullivan et

al. [8,10,32] that model Parnas’s canonical and extensively-

studied keyword in context (KWIC) [26] system. In the

DSMs presented in previous works, all the environment

variables were aggregated into a single module. To ease

the comparison, we slightly modify the automatically gen-

erated hierarchy by moving all the environment variables to

a standalone module. Figure 8 shows a DSM of KWIC with

this modified hierarchy. Since environmental conditions do

not depend on design decisions, the DSM is still in block

triangular form.

Figure 8. KWIC Design Structure Matrix

In comparing our DR hierarchy-clustered DSM with the

manually clustered DSM published in previous works [8,

10, 32], we notice only two differences.

1. In previous DSMs, all the design rules were grouped

into a single module whereas our approach generates

five separate modules that are design rules. The sepa-

rated clusters in our model indicate how design tasks

done in parallel. For example, we can have someone

start development on the input impl module after the

linestorage ADT and input ADT design rules are de-

termined rather than waiting for the other design rules

to be determined also.

2. Our approach does not identify master ADT as a de-

sign rule as the previously published DSMs did. We

observe that the only dependent of master ADT, in the

specified design of KWIC, is master impl. Based on

the definition of design rules, our algorithm’s classifi-

cation of master ADT is correct: design rules are meant

to decouple subordinate modules but master ADT does

not decouple two modules. As a result, our approach

correctly classifies it as not being a design rule.

In summary, we can conclude that our approach accu-

rately identifies the design rules and independent modules.

5.2.2. Scalability Assessment

As preliminary evaluation for the scalability of our ap-

proach, we apply it to the Apache Ant ACN we derived in

our UML transformation evaluation. The input ACN con-

sists of 1200 variables and 4400 constraints. Figure 7 shows

part of the system’s DSM as clustered with our design rule

hierarchy. After applying our hierarchy clustering, the DSM

is in block triangular form. The current implementation of

our DR hierarchy algorithm took less than 15 seconds to de-

rive this hierarchy, showing the feasibility of the approach

for use in real projects.

As an initial evaluation on the usefulness of our ap-

proach, we examined the derived DR hierarchy for Apache

Ant to see if the clustering provides insights into the quality

of the system’s design. Despite having over 600 classes and

1200 variables, the hierarchy consists of only nine layers,

indicating much of the system could have been developed

in parallel. In addition, our hierarchy contained 837 tasks

with 436 of them being independent modules, containing

671 variables. Since more than half of the variables in the

ACN are in independent modules, this suggests that the sys-

tem’s design is very well modularized to allow for evolution

and maintenance. Together, the low depth of the hierarchy

and the high number of independent modules suggest that

the system has well defined interfaces (design rules) that

decouple the other modules in the system. Although these

properties are interesting indications of the actual quality

of the design, we have yet to confirm these properties with

empirical metrics.

6. Discussion and Future Work

In this paper, we only considered UML class diagrams,

but there are many UML diagrams, such as sequence dia-

grams and component diagrams. Automatically transform-

ing other UML diagrams into ACNs is part of our future

work. One of our concurrent work [29] investigates the

transformation of UML component diagrams into ACNs

and defines metrics for assessing software architecture sta-

bility based design rule hierarchy clustering.

Since a UML class diagram only models part of a design

space, and there many implicit decisions and constraints a

UML class diagram does not capture, the resulting ACNs

thus can be insufficient. This paper does not evaluate how

effective it is to analyze design modularity based on UML

model only. On the other hand, the UML-generated ACN

model can always be extended and complemented with new

variables and constraints, as shown in our recent work [29],

and the UML based ACN just serve as a starting point.

We also recognize that people often do not need to gener-

ate a complete UML class diagram. Instead, only the most

complex and poorly-understood parts are modeled and an-

alyzed. The effectiveness of using our technique to infer

useful information from a partial model is not evaluated yet.

Seeking to evaluate the technique using real UML models

and a real system is our major future work.

Similar to our UML transformation evaluation, our eval-

uation on the design rule hierarchy algorithm is still pre-

liminary. We only evaluated the feasibility, but not the ef-

fectiveness of this technique in terms of guiding software

development and task assignment.

7. Related Work

Organization of software as a layered, hierarchical struc-

ture been advocated for many years. Dijkstra [11] proposed

this idea with the restriction that layers that could only com-

municate with adjacent layers. Today, the layered style is

popular in software architecture [7]. A major between our

layers and these, is that the modules in these architectures

are often decided based on classes, or other programmatic

components whereas the modules in our approach are in-

dependent task assignments. Parnas supported the design

of systems with hierarchical structures and the definition of

modules as task assignments [26]. He proposed the “uses”

hierarchy [27] for organizing programs. The “assumes” re-

lation that define our hierarchy is similar to the “uses” re-

lation but our tasks may span multiple layers of the “uses”

hierarchy.

The idea of software clustering is also not new. Many

existing approaches can cluster modules and layers from

source code [2, 21, 24, 28] but our approach differs in in-

tent from these. Rather, our approach determines modules

and layers at design level.

Related to our design rule hierarchy, researchers have

proposed methods for task scheduling but the identification

of tasks and their dependencies is often left as a prerequi-

site for these approaches. For example, Jalote and Jain [19]

presented an interesting scheduling algorithm that considers

task dependencies, available skills, and resource constraints

but their approach expects a task graph as an input. Our

approach complements theirs in that we can derive the task

graph that can be used as the input to their algorithm, and

use their approach to elaborate on our hierarchy’s task as-

signments while considering other issues such as resource

constraints.

Previous work on the formalization of UML is not diffi-

cult to find. For example, Evans et al [14] formalize UML

with Z notation [30], Baresi and Pezzè [5] describe a for-

malization using high-level Petri nets [16], and Anastasakis

et al [1] convert UML to Alloy [18]. To the best of the

authors’ knowledge, there are no existing formalizations of

UML using analytical decision models. By using DSMs

and ACNs, the designers who are familiar with UML mod-

els can leverage new modularity and evolution techniques,

such as Baldwin and Clark’s net option value analysis [4],

and design modularity testing [9].

Our current implementation of our UML transformation

tool takes an approach similar to the graph transformations

discussed in Baresi and Pezzè [6]. They describe an ap-

proach that uses rules, similar to context-free grammars, to

parse a concrete graph syntax into an abstract syntax that

contains the operational semantics of the diagram. Simi-

larly, our tool uses rules to search a concrete representation

of UML (e.g. XMI [25]) and first transforms it to a common

intermediate representation before generating the ACN.

8. Conclusion

Despite the promising utility the design rule theory and

its supporting analytical decision models, DSM and ACN,

have displayed, the theory and the models present sharp

learning curves for software designers who are normally

trained for UML modeling. Identifying independent mod-

ules, defined as independent task assignment in the theory,

is also difficult in large-scale systems. We contributed an

approach to automatically transform UML class diagrams

into ACNs, addressing the first problem, and a design rule

hierarchy clustering algorithm to reveal independent task

modules and how design tasks can be maximally paral-

lelized. We evaluated our methods using both canonical

and widely used examples, as well as a large, open-source

project, and obtained positive and promising results.

References

[1] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray.

UML2Alloy: A challenging model transformation. In Proc

of the 10th MODELS, pages 436–450, Sept. 2007.

[2] B. Andreopoulos, A. An, V. Tzerpos, and X. Wang. Multiple

layer clusterings of large soft systems. In Proc of the 12th

WCRE, pages 79–88, Nov. 2005.

[3] Apache Soft Foundation. Apache ant project.

http://ant.apache.org/.

[4] C. Y. Baldwin and K. B. Clark. Design Rules, Vol. 1: The

Power of Modularity. MIT Press, 2000.

[5] L. Baresi and M. Pezzè. On Formalizing UML with High-

Level Petri Nets, volume 2001 of LNCS, pages 271–300.

Springer, 2001.

[6] L. Baresi and M. Pezzè. From Graph Transformation to Soft-

ware Engineering and Back, volume 3393 of LNCS, pages

24–37. Springer, 2005.

[7] L. Bass, P. Clements, and R. Kazman. Software Architecture

in Practice. Addison-Wesley, 2nd edition, 2003.

[8] Y. Cai. Modularity in Design: Formal Modeling and Auto-

mated Analysis. PhD thesis, Univ of Virginia, Aug. 2006.

[9] Y. Cai, S. Huynh, and T. Xie. A framework and tools support

for testing modularity of software design. In Proc of the

22nd ASE, Nov. 2007.
[10] Y. Cai and K. Sullivan. Modularity analysis of logical design

models. In Proc of the 21st ASE, Sept. 2006.

[11] E. W. Dijkstra. The structure of the “THE”-

multiprogramming system. CACM, 11(5):341–346,

May 1968.

[12] A. Egyed, W. Shen, and K. Wang. Maintain life perspectives

during the refinement of UML class structures. In Proc of

the 8th FASE, Apr. 2005.

[13] S. D. Eppinger. Model-based approaches to managing con-

current engineering. Journal of Engr Design, 2(4):283–290,

1991.

[14] A. Evans, R. France, K. Lano, and B. Rumpe. The UML

as a formal modeling notation. Computer Standards and

Interfaces, 19(17):325–334, 1998.

[15] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. De-

sign Patterns: Elements of Reusable Object-Oriented Soft-

ware. Addison-Wesley, Nov. 1994.

[16] C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezzè. A uni-

fied high-level petri net formalism for time-critical systems.

TSE, 17(2):160–172, Feb. 1991.
[17] S. Huynh, Y. Cai, and W. Shen. Automatic transformation

of UML models into analytical decision models. Technical

Report DU-CS-08-01, Drexel Univ, Apr. 2008.

[18] D. Jackson. Alloy: A lightweight object modeling notation.

TOSEM, 11(2):256–290, 2002.

[19] P. Jalote and G. Jain. Assigning tasks in a 24-hour soft devel-

opment model. In Proc of the 11th APSEC, pages 309–315,

Dec. 2004.

[20] M. J. LaMantia, Y. Cai, A. D. MacCormack, and J. Rusnak.

Analyzing the evolution of large software systems using de-

sign structure matrices and design rule theory. In Proc of the

7th WICSA, pages 83–92, Feb. 2008.

[21] Lattix Inc. The lattix approach, 2004.

[22] C. V. Lopes and S. K. Bajracharya. An analaysis of mod-

ularity in aspect-oriented design. In Proc of the 4th AOSD,

pages 15–26, Mar. 2005.

[23] A. MacCormack, J. Rusnak, and C. Y. Baldwin. Explor-

ing the structure of complex software designs: An empirical

study of open source and proprietary code. Management

Science, 52(7), July 2006.

[24] B. S. Mitchell and S. Mancoridis. On the automatic mod-

ularization of software systems using the bunch tool. TSE,

32(3):193–208, 2006.

[25] OMG. XML metadata interchange version 2.1, Dec. 2007.

[26] D. L. Parnas. On the criteria to be used in decomposing

systems into modules. CACM, 15(12):1053–8, Dec. 1972.

[27] D. L. Parnas. Designing software for ease of extension and

contraction. TSE, 5(2):128–138, Mar. 1979.

[28] N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using de-

pendency models to manage complex software architecutre.

In Proc of the 20th OOPSLA, Oct. 2005.

[29] K. Sethi, Y. Cai, S. Huynh, A. Garcia, and C. Sant’Anna.

Assessing design modularity and stability using analytical

decision models. Technical Report DU-CS-08-03, Drexel

Univ, Sept. 2008.

[30] J. M. Spivey. The Z Notation: A Reference Manual. Prentice

Hall, 2nd edition, 1992.

[31] D. V. Steward. The design structure system: A method for

managing the design of complex systems. IEEE Trans on

Engr Management, 28(3):71–84, 1981.

[32] K. Sullivan, Y. Cai, B. Hallen, and W. G. Griswold. The

structure and value of modularity in design. ACM SIGSOFT

Software Engr Notes, 26(5):99–108, Sept. 2001.

