
Logic-Based Software Project Decomposition

Yuanfang Cai and Sunny Huynh

Drexel University, Philadelphia, PA, 19104, USA

Abstract. Prevailing design modeling techniques are not designed to
generally model decisions made throughout software lifecycle, nor to sup-
port automatic modularity analysis. We have developed an analyzable
design representation called an augmented constraint network (ACN),
and an algorithm to decompose a big ACN model into smaller sub-
ACNs. To evaluate the effectiveness of the decomposition algorithm in
terms of enabling parallel implementation and the feasibility of modeling
and analyzing software decisions made in practice using our framework,
we apply our techniques to an online student society financial manage-
ment project. Among other results, the experiment shows that (1) our
framework is general enough to uniformly model decisions made within
different project stages, such as requirement analysis and architecture
design; (2) each sub-ACN, automatically decomposed using our proto-
type tool, Simon, corresponds to an independent responsibility assign-
ment that can be implemented in parallel; and (3) our approach supports
automatic traceability and change impact analysis.

1 Introduction

Prevailing software design modeling techniques are not designed to generally
model software decisions and their dependence relations that span multiple
stages in software lifecycle, such as requirement, design, and testing. Conse-
quently, when the requirement changes, we lack an automatic way to find the
decisions made in other stages that need to be revisited.

According to Parnas [16], a module is defined as a responsibility assignment
that can be accomplished independently. From the perspective of overall software
lifecycle, a module spans multiple stages. For example, to implement a service
or a feature independently, the implementor needs to know the relevant subset
of requirements, the relevant subset of design decisions, and the interfaces to
other relevant modules. Current design modeling techniques and tools are not
designed to support such module decomposition automatically.

To address these problems, we first need a design representation that is gen-
eral enough to model decisions within difference project stages. Recent work,
such as that of Sullivan et al. [17, 18] and Lopes et al. [14], has shown that Design
Structure Matrices (DSM) modeling is valuable in software design modularity
analysis. In a DSM, decisions can be generally modeled as variales labeling the
rows and columns of a square matrix, in which marked cells model the depen-
dences among these decisions. However, a DSM does not explicitly represent



multiple decisions within a dimension, and does not support the analysis of and
comparison among these decisions. Manually-constructed DSMs are also shown
to be ambiguous and error-prone [7, 8].

We have developed a logic-based analyzable design model called an aug-
mented constraint network (ACN) [7, 8, 5], in which design decisions and their
relations can be generally modeled as variables and logical expressions of a con-
straint network. Different from other constraint-based design space modeling
techniques, we model non-logical but critical decision-making aspects as auxil-
iary data structures. In particular, we model the dominance relation among de-
cisions and multiple design views as two additional data structures: dominance
and cluster set.

Using the constraint network and dominance relation of an ACN, we derive a
non-deterministic automaton to capture all possible ways in which any change to
any decision in any state of a design can be compensated for by minimal sets of
changes to other decisions, which we call a design automaton (DA). DA enables
basic design impact analysis [7, 5]. Summarizing from a DA, we further derive a
pair-wise dependence relation (PWDR). Combining PWDR with selected cluster
from the cluster set of the ACN, a DSM can be automatically derived.

We have shown that ACN modeling, supported by our prototype tool, Si-
mon, formalizes the key notions in Baldwin and Clark’s modularity theory [3]
and Parnas’s information hiding criteria [16]. Because DSM can be derived from
ACN, ACN modeling thus has all the capability of DSMs, provides DSM mod-
eling with precise semantics, and brings additional benefits such as the explicit
representation, analysis, and comparison of different design choices.

To address the scalability issue caused by the difficulty of constraint solving,
we created an approach to make use of the non-trivial dominance relation in an
ACN model to decompose an ACN into a number of smaller sub-ACNs, solve
each sub-ACN separately, and integrate partial results, but only as needed [8].
We observe that this divide-and-conquer approach not only reduces the time
required to analyze the design models we studied dramatically, but also has
the potential to decompose a model into independent responsibility assignment
modules.

To evaluate the effectiveness of the decomposition algorithm in terms of en-
abling parallel implementation, to evaluate the feasibility of modeling and ana-
lyzing decisions and their relations in multiple design stages using ACNs, and to
comprehensively evaluate the framework in practice, we apply our modeling and
analysis techniques to a real senior design project being developed by a group of
senior students in the department of computer science, Drexel University. Upon
completion, the product will be used by the Activity Fee Allocation Committee
(SAFAC) at Drexel to manage, track, and audit the financial activities of all the
student organizations on campus.

The team strictly follows software engineering standards, going through the
stages of requirement analysis, design, implementation, and testing. Agile devel-
opment process is employed, and three iterative builds, each including design,
coding, integration, and testing are scheduled. According to the senior design



guidelines provided by the department, the team develops an artifact at each
stage, such as requirement specification and design documentation.

Given the requirement and design documents, the team faces the problem
of how to decompose the tasks into modules so that the implementation can be
done in parallel. Assigning tasks according to features does not guarantee parallel
implementation because there is neither a clear picture about the interfaces
among these features, nor about the constraints that should be respected. The
documentations with hundreds of pages do not provide a desirable basis for
task decomposition either. In addition, given envisioned changes, it is hard to
estimate the impacts.

To address these problems on one hand and to evaluate the ACN framework
on the other, we model the decisions and their relations extracted from the
requirement specification, design document, and testing plan into an augmented
constraint network (ACN). After that, we use Simon to automatically decompose
the big ACN into a number of smaller sub-ACNs, analyze each one individually,
and compose the results when needed.

We observe that each decomposed sub-ACN contains a subset of decisions
in requirement, design, and testing plan respectively that are relevant to one
function, forming an independent responsibility assignment module. The team
can thus split their tasks accordingly and implement these modules in parallel.
We also show that our framework is capable of modeling design decisions and
design rules in contemporary service-oriented architecture uniformly, and enables
automatic traceability analysis and change impact analysis.

The rest of this paper is organized as follows. Section 2 intruduces our online
financial management project. Section 3 illustrates how we model design deci-
sions within different stages using an ACN. Section 4 reports our decomposition
and analysis results. Section 5 discusses related work. Section 6 concludes.

2 Application Overview

The outside stakeholder, Student Activity Fee Allocation Committee (SAFAC)
at Drexel, is in charge of the fund allocation to over 160 student organizations,
and needs to randomly perform audits on organizations each year. The difficulty
comes from the fact that these organizations manage their financial activities in
different ways: some use old-fashioned paperwork and some use spreadsheets. To
address the problem, a senior design group in the Computer Science department
proposed to develop a web-based application, VODKA Organizational Device
for Keeping Assets (VODKA), to standardize the financial management method
among all student organizations, facilitate financial activity tracking, provide
a central storage of all organizations financial information, and simplify the
auditing.

Following the senior design project guidelines provided by the department,
the team has strictly followed software engineering standards, going through re-
quirement analysis, design, implementation, and testing stages. At each stage,
the students are asked to provide an artifact, a documentation or source code.



The requirement specification conforms to IEEE standards [9] and is approved
by the outside stakeholder, SAFAC. The design document describes and models
the combined three-tier and service-oriented architecture design using architec-
tural diagrams, UML sequence diagrams, entity-relation diagrams, and database
schemas. The senior design team also developed a acceptance testing plan.

At this point, the implementation tasks need to be assigned to implementors
for the first build and testing with a predetermined deadline. Following an ag-
ile development process, two additional rounds of design, implementation, and
testing will be performed. Given the deadline, ideally the tasks should be imple-
mented in parallel. However, the documentation does not provide a good basis
for task decomposition. First, the documents are lengthy and imprecise. Sec-
ond, the modeling diagrams are large and hard to read. Third, the dependence
relation crosscuts the overall requirements and architectural design.

We tried to decomposed the tasks according to the horizontal layers of the ar-
chitecture, such as user interface components and data processing components.
However, there is no clear picture about what are the interfaces among these
components, what decisions have to made before two implementors can work
independently, what part of the requirements an implementor should fulfill, and
what are the assumptions and constraints the implementor should respect. More-
over, the consequences of making changes are hard to predict.

As the advisor and the main designer of this system, the authors extract
all the decisions from these documents and model them as variables; extract
the dependence relation among these decisions and model them using logical
expressions, constituting a constraint network. We also model the dominance
relation among these decisions as an auxiliary data structure. For example, the
requirement specification, as agreed by the outside stakeholder, dominates other
decisions. Finally, we model the different ways the design can be viewed using
another data structure called cluster set. The three parts, constraint network,
dominance relation, and cluster set constitute an ACN.

Given the VODKA ACN, we first use the algorithm introduced in our pre-
vious work [8] to decompose the big model into 21 sub-ACNs using Simon. We
observe that each sub-ACN involves all the decisions needed for one component,
including parts of the requirement, parts of the design, and parts of the test-
ing plan. In other words, each sub-ACN represents a responsibility assignment
module. A sub-ACN, along with its automatically generated DSM, provides a
compact view showing the related requirements, design rules, constraints, and
testing plans, enabling independent implementation.

In addition, through analyzing each module and integrating the results, we
identified several design issues that can not revealed by the informal documents
only. We can also perform change impact analysis and traceability analysis using
Simon. In the next sections, we illustrate how to generally model decisions within
different project stages and their relations into an ACN model, and report our
decomposition and analysis result.



3 Project Modeling

This section presents how we recognize, extract, and model software decisions
and their dependencies within multiple development stages of VODKA, how to
identify and model the dominant relation among these decisions, and how to
model the different ways the same system can be viewed.

3.1 Model Decisions as Variables

Designers make decisions at various stages. In the requirement analysis stage,
the designers make decisions such as what functions will be included in the
systems and what are the interfaces to external systems; in the design stage, the
designers make decisions such as what classes or services should be included for
which particular requirements. We now introduce how we abstract and model
these decisions from the following aspects.

Requirement Decisions The VODKA requirements are specified strictly con-
forming to IEEE standards [9], and are approved by the outside stakeholder.
The document specifies both functional and non-functional requirements. In this
specification, each item is prefixed with an index number for later reference. The
priority number following the description indicates whether the requirement will
be implemented in the first release. For example, The item 1130 is a planned
future enhancement. Figure 1 depicts part of the requirement documentation:

We view each item as a variable. Take item 1060 for example. This item
specifies the functionality of attaching files to transaction records. The concrete
requirement could change over time, for example, from “any number of files” to
a particular number of files for some unforeseen reason. Accordingly, we gener-
ally view “file attachment” as a dimension where the designers have to make a
concrete decision, and model it using a variable spec_trans_attachment. The
prefix spec indicates that this is a specification decision. We model the con-
crete decision of this dimension as the values of this variable, and all the values
constitute the domain of this variable. Since the item 1060 in this version of
specification has specified the decision, we model this decision as value v1_1060
Because there can be other choices for file attachment, we generally model these
unknown choices as other. As a result, we formally model the file attachment
requirement as: spec_trans_attachment: {v1_1060, other}.

There are 168 indexed items in the VODKA requirement specification, in-
cluding the creation, deletion, modification of user account, financial account,
financial transactions, as well as other functions such as report generation and
email notification. We abstractly model them using 40 specification variables.

Architectural Decisions The general architecture of VODKA is a combina-
tion of the three-tiered and service-oriented architecture. The traditional three-
tier architecture is designed to cater the needs of a central database and server so
that the user can remotely manage and audit student society financial activities.



Fig. 1. VODKA Requirement Specification Snapshot

The service-oriented architecture is designed to maximize reusability and flexi-
bility, and to facilitate communication with external applications. For example,
VODKA needs to integrate Drexel authentication systems for user validation,
and makes use of external short message system (SMS) and email system to send
notifications.

Figure 2 shows the three-tier architectural diagram, in which the components
of the system are divided among the presentation layer, business layer, and
data layer. Components in the presentation layer interact with the user, validate
input data, and display reports. Business layer components provide business
logic and data processing capability. Data layer components provide access to
the database. Each layer of the system depends only on the layer directly below
it, and layers may not depend on layers above them.

This high-level architecture diagram does not provide sufficient basis for task
decomposition. For example, it does not show what are the interfaces among
the components. According to Baldwin and Clark’s modularity theory [3], the
interfaces among the components are the design rules that decouple otherwise
coupled decisions, and are the most important decisions that have to be made
beforehand.



Transaction
Service

Fin Acct
Service

Notify
Service

DB

DB

Login
Data Source

Authentication
Service

• • •Email
Service

SMS
Service

User

Login
Servlet

Fin Acct
Servlet

Trans History
Servlet

Pr
es

en
ta

tio
n 

La
ye

r
Bu

si
ne

ss
 L

ay
er

Da
ta

 L
ay

er

View Acct
Servlet

Summary
Servlet

User Acct
Servlet

Report
Servlet

Search
Servlet

Notification
Servlet

Transaction
Servlet

Login
Service

Logout
Service

Report
Service

Trend
Service

Revert
Service

Attach File
Service

User Acct
Service

Database
Triggers

Session
Service

Fig. 2. VODKA Architecture

To model the design in greater detail, the designers model each feature using
a UML sequence diagram. There are 24 main features of this systems, and each of
them is documented in a subsection of the design document with a description, a
sequence diagram, and a note showing which requirements the feature is designed
to fulfill. UML sequence diagrams are usually large and span more than one page.
Figure 3 shows a snapshot of the UML sequence digram for the login feature.

We identify the following kinds of design decisions, and model them as vari-
ables.

– Each service and servlet in the sequence diagrams is a design dimension that
the designers decide to include. The detailed design of each service or servlet
can vary. Accordingly, We view each of them as a variable. For example, the
login service described in section 2.6.2 of the 1st version design document is
modeled as: d_service_login: {v1_2_6_2, other}.

– The messages passing around the services are also design decisions. This kind
of design decisions are particularly important because they are the interfaces
among difference components. For example, the msg_login that goes into
service Authentication can be viewed as the contract between the internal
service login and the external service Authentication. Determining the
format and content of these messages early enables parallel development of
these components. In other words, these messages are the architecture design
rules in Baldwin and Clark’s modularity theory.



Fig. 3. Snapshot of VODKA Software Design Documentation

We similarly model these messages as variables. The concrete formats of
these messages are not determined and documented, but we know that the
concrete decisions may vary. Accordingly, we generally model the possible
choices using two values orig (short for original) and other (some future
unelaborated choices). For example, in the following definition,
msg_service_login_requestlostuid: {orig, other}, the middle part of
the name service_login means that this is a message decision that have to
be made by the login service designer. The content of the message is about
lost user id request.

Testing Decisions The team also developed an acceptance testing plan doc-
umenting test cases according to requirements. Each subsection describes the
preconditions, postconditions, and expected actions for each function. The fol-
lowing definition models the testing decision about the account summary func-
tion specified in section 6.2.3 of the acceptance testing plan document, version
1: test_account_summary: {v1_6_2_3, other}.

Implementation Decisions The design is developed as a team, and the im-
plementor of each component will have to make his own decision about how to
implement the component. We model the implementation decision of each com-
ponent with a new variable. For example, impl_service_login: {v1, other}
models the decision that has to be made by the implementor of the login service
for the first release.



Decision Modeling Summary At this point, we model the VODKA system
with 162 variables using Simon. The model is extensible in the sense that new
design components can be added and decisions such as database schema can also
be modeled. We could also model other dimensions such as the choices of a web
server and other technologies, if needed later.

3.2 Model Dependences as Logical Expressions

After modeling these decisions using variables, we now model their dependence
relations that span across overall project development stages. In particular, we
model the following types dependence relations: (1) dependences between design
decisions and requirement decisions; (2) dependences between testing decisions
and requirement decisions; (3) dependences between design decisions and im-
plementation decisions; (4) dependences between implementation decisions and
design rules. Each of the following line represents one of the four kinds of de-
pendences.

(1) d_servlet_login = v1_2_5_2 => spec_security_authen = v1_1390;
(2) test_logging = v1_6_2_1 => spec_user_account_types = v1_0180;
(3) impl_servlet_login = v1 => d_servlet_login = v1_2_5_2;
(4) impl_servlet_login = v1 => msg_service_login_deny = orig;

The major dependence relation we model is the assumption relation. For ex-
ample, line (1) shows that the design of the login servlet, as specified in section
2.5.5 of the design document, version 1, assumes that the security authentication
function is as specified in the specification document, version 1, item 1390. The
design decision is made corresponding to the requirement. Logically, the binding
of the assuming variable implies the assumed binding. This might seem coun-
terintuitive, but there could be other choices for the design of the login servlet
that are also consistent with the specification, and we do not want to model
an overly constrained design. On the other hand, if the requirement specifica-
tion changes, the corresponding design decision has to be revisited. Thus the
implication arrows are opposite of what one might initially expect.

3.3 Model Dominance Relation

Dominance relation is an indispensable design phenomenon but cannot be mod-
eled by logical expressions. For example, in VODKA, the requirements are agreed
by the outside stakeholders and thus dominate other decisions. Design rules, such
as the message format and interfaces agreed among the designers and imple-
mentors, dominate other subordinate implementation decisions. We model these
relation as a binary dominance relation supplement to the logical constraint net-
works. For example, the relation includes the pair
(d_servlet_login, spec_security_authen), indicating that the login servlet
design should not influence the security specification).



3.4 Model Clustering Set

Another phenomenon that cannot be readily expressed by logical expressions is
that the same design can be viewed in different ways: in the layered architecture
diagram, each layer can be seen as a cluster; each feature crosscuts all the layers,
forming a vertical slicing cluster; the client views all the requirements together as
a cluster; and all the designs are clustered together into a document. We model
this diversity using another data structure called cluster set. Each element in
the set models one way the system can be clustered, and each cluster is a set
variables organized into a tree structure. Note that a cluster is not a module. A
cluster helps to understand the system in different ways, while a module models
independent responsibility assignment.

The constraint network, dominance relation, and cluster set constitute a full
VODKA augmented constraint network. In the next section, we introduce how
Simon automatically decompose the big ACN into modules that can be imple-
mented independently, the analysis capabilities enabled, and the issues identified
in current design and testing plan.

4 Design Analysis

In our previous work [8], we introduced an algorithm to automatically decom-
pose a big ACN model into smaller sub-ACNs, to address the scalability issue
caused by the difficulty of constraint solving and the need to enumerate solu-
tions required by the DA. The basic idea is to model the constraint network part
of the ACN using a directed graph. In this graph, each node represents a de-
sign variable. Two variables are connected if they appear in the same constraint
expression. We then cut the edges of the directed graph using the non-trivial
dominance relation of the ACN: if A cannot influence B, then the edge pointing
B from A will be removed from the graph.

After that, we compute the condensation graph of the resulting graph [2], and
put all the variables along the chains ending with the same minimal elements into
a sub-ACN, with the relevant subset of constraints, dominance relation and clus-
ter set. As a result, we decompose the big ACN into a set of smaller sub-ACNs
that can be solved individually. We also presented the algorithm of integrating
analysis results of sub-ACNs into a full solution [8]. More interestingly, we found
that each minimal element of the condensation graph represents a function, and
all the chains ending with a minimal element contain all the decisions needed
to accomplish the function. In other words, each sub-ACN has the potential to
be an independent responsibility assignment module. To further evaluate the
decomposition algorithm in terms of its ability to decompose a system into inde-
pendence modules, we use this algorithm to decompose the VODKA ACN into
a number of sub-ACNs, analyze each sub-ACN individually, and integrate the
results.

The experiment shows that our approach not only generates independent
modules, enables traceability analysis and change impact analysis, but also re-
veals a number of issues in current design and testing plan.



4.1 Model Decomposition

Using Simon, the big VODKA ACN is decomposed into 21 smaller sub-ACNs.
We notice that the 21 sub-ACNs correspond to the 21 components in the layered
architectural diagram shown in Figure 2, although we did not use the digram
when we model decisions and their dependencies. Note that there are 24 VODKA
features, and a module does not correspond to a feature. Instead, a feature
may involve multiple components. For example, the login feature consists of one
component from each layer. One the other hand, a component may have multiple
features.

Table 1 summarizes these sub-ACN modules, showing the number of variables
and the corresponding component of each module. The modules ending with
(UI) are the components in the representation layer; the modules ending with
(Data) are the components in the Data layers; and all the other modules are the
components in the business layer.

Table 1. Decomposed VODKA

No. Module size No. Module size No. Module size

1 attachment 3 8 report 13 15 report (UI) 12

2 fin acct. (Data) 14 9 revert 3 16 search (UI) 4

3 notification (Data) 3 10 session 11 17 summary (UI) 11

4 transaction (Data) 31 11 trend 4 18 transaction (UI) 30

5 user acct. (Data) 17 12 fin acct (UI) 3 19 history (UI) 4

6 login 12 13 login (UI) 3 20 user acct. (UI) 10

7 logout 3 14 notification (UI) 3 21 view (UI) 20

After decomposition, we can use Simon to open each sub-ACN module as
an independent project. Figure 4 shows one of the sub-ACNs corresponding to
the login service in the business layer. Figure 5 shows the corresponding DSM
automatically generated by Simon.

Compared with the highly simplified layered architecture diagram, each com-
ponent is now modeled by an ACN specifying all the decisions needed for the
component and the constraints among them. The DSM shows that these are
the decisions from different development stages. From the ACN and DSM, we
can easily tell that before the login service can be accomplished independently,
the designer/implementer has to know the four related requirements (row 0-3),
having agreements about two message formats with the authentication service
designer (row 4-5), having agreement about three message formats with the login
servlet designer (row 6-8), and the implementation should confirm to the design
(row 9).

4.2 Traceability Analysis

Simon generates all the designs within the design space, from which the user
can perform traceability analysis. For example, Figure 6 shows a design for the



Fig. 4. Simon Snapshot: the login service sub-ACN

login service. The user can see that the current design and implementation is
according to indexed requirement items 1390, 1320, 1280, and 0470, specified in
the first version of the requirement specification document.

4.3 Change Impact Analysis

If one of the decisions changes, for example, the requirement specified by item
0470, account deactivation, has to be changed, the designer needs to know what
other decisions have to be visited. Using Simon, the designer can perform change
impact analysis introduced in our previous paper [7, 8]. For example, if the value
of spec_user_account_deactivation changes to other, Simon will compute
that the following decisions need to be revisited: d_service_data_useracct,
d_service_login, d_servlet_login, impl_service_data_useracct,
impl_service_login, impl_servlet_login, and test_member_deactivate.
Our recent paper [6] presents a model to analyze software evolution that involves
design space expansion. As part of our future work, we will apply the model to
VODKA during its feature enhancement stage.

4.4 Design Issues Revealed

Some sub-ACNs have relatively large number of variables, such as the 4th sub-
ACN with 31 variables, and the 18th sub-ACN with 30 variables. Before we
further generate their DSMs, we found that the large size of the module indicates



0 1 2 3 4 5 6 7 8 9 10 11

0:spec_user_account_deactivation . x

1:spec_abnormal_lost_uid .

2:spec_abnormal_lost_pwd .

3:spec_security_authen .

4:msg_service_auth_deny2 .

5:msg_service_auth_approve .

6:msg_servlet_login_login .

7:msg_servlet_login_requestlostuid .

8:msg_servlet_login_requestpwd .

9:d_service_login x x x x . x

10:impl_service_login x x x x x x x x x x .

11:test_member_deactivate x .

Environ-
mental 
Conditions
--Spec

Design 
Rules

Design
& Impl.

Testing
.

Fig. 5. The logic service DSM generated by Simon

that these components are not very well modularized. For example, the 18th
sub-ACN models the transaction servlet in the presentation layer. The sub-ACN
indicates that the design of the servlet has to involve many dimensions, such as
transaction creation, deletion, modification.

Given the model, the designers realized that this is not a good design because
many features (concerns) are tangled together, and it is going to be very difficult
to use one webpage as the user interface for so many interactive activities. The
big modules suggest the parts that need be reconsidered and redesigned. In other
words, the decomposition reflects the quality of the design: if a system is better
modularized, the big ACN will be decomposed into larger number of ACNs with
smaller sizes.

The experiment also reveals other issues in the informal documents. For
example, a variable called d_service_trigger is never used in any constraint.
By checking the design document retrospectively, we found that although this
service appears in one of the sequence diagrams, but it is not specified or used
in any other models.

4.5 Testing Issues Revealed

The acceptance testing plan specifies a number of test cases. Without our mod-
eling and analysis experiments, it is hard to tell if the testing plan is complete.
That is, all required functions should be tested. By examining the sub-ACNs,
we found that several sub-ACNs do not have any testing components, such as
the notification sub-ACN. We then realized that although notification is an im-
portant feature, but is not included in the testing plan. The experiment suggests
that we come up with a more complete testing plan.

5 Related Work

Many people have explored auto-clustering approaches to decomposing a big
dependence model into modules, such as Mancoridis’s Bunch tool [15], which is



Fig. 6. A design for the login service

based heuristic fitness function. By contrast, our approach uses dominance rela-
tions to decompose a big model. Different from the feature-oriented research led
by Batory [4], Goguen [11] and Czarnecki [10], we model more general decisions,
and view features as one kind of decisions. While their purpose is to synthesize
complex software systems from libraries of reusable components, our purpose is
to rigorously support modularity analysis and decision-making. Similar to our
design space modeling, Lane [13] models the structure of software systems as de-
sign spaces. Different from our work, they focus on functional choices. Their no-
tions of rules, similar to our constraints, are formulated to relate choices within a
design space. Our modeling approach is more general and formal, supporting au-
tomated analysis. Traditional impact analysis research focuses on change issues
at program level, as summarized in [1], while our approach works at abstract
design level. Our work is different form Kazman’s [12] Software Architecture
Analysis Method (SAAM) because our approach is based on formal modeling
and automatic analysis.

6 Conclusion

To address the problem that prevailing design modeling techniques are not de-
signed to generally model, analyze, and decompose decisions that span multiple
stages of software lifecycle, we have developed an analyzable ACN design repre-
sentation and a decomposition algorithm. This paper evaluates our framework by
modeling and analyzing the VODKA project. The experiment shows obvious ad-



vantages of our approach: (1) decisions made in various stages are automatically
decomposed into independent responsibility assignment modules; (2) traceability
and changeability analyses are automated; (3) design issues are identified early
and thus can be corrected before making expensive coding investments.

References

1. R. Arnold and S. Bohner. Software Change Impact Analysis. Wiley-IEEE Com-
puter Society Pr, first edition, 1996.

2. S. Baase and A. V. Gelder. Computer Algorithms: Introduction to Design and
Analysis (3rd Edition). Addison Wesley, 3rd edition, Nov 1999.

3. C. Y. Baldwin and K. B. Clark. Design Rules, Vol. 1: The Power of Modularity.
The MIT Press, 2000.

4. D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin. The genvoca
model of software-system generators. IEEE Software, 11(5):89–94, Sept. 1994.

5. Y. Cai. Modularity in Design: Formal Modeling and Automated Analysis. PhD
thesis, University of Virginia, Aug. 2006.

6. Y. Cai and S. Huynh. An evolution model for software modularity assessment. In
Proceedings of the ICSE Workshop on Assessment of Contemporary Modularization
Techniques (ACoM 2007), May 2007.

7. Y. Cai and K. Sullivan. Simon: A tool for logical design space modeling and
analysis. In 20th IEEE/ACM International Conference on Automated Software
Engineering, Long Beach, California, USA, Nov 2005.

8. Y. Cai and K. Sullivan. Modularity analysis of logical design models. In 21th
IEEE/ACM International Conference on Automated Software Engineering, Tokyo,
JAPAN, Sep 2006.

9. S. E. S. Committee. Recommended practice for software requirements specifica-
tions. (830), 1998.

10. K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley Professional, 1st edition edition, Jun 2000.

11. J. A. Goguen. Reusing and interconneting software components. IEEE Computer,
19(2):16–28, Feb. 1986.

12. R. Kazman, L. J. Bass, M. Webb, and G. D. Abowd. SAAM: A method for
analyzing the properties of software architectures. In International Conference on
Software Engineering, pages 81–90, 1994.

13. T. G. Lane. Studying software architecture through design spaces and rules. Tech-
nical Report CMU/SEI-90-TR-18, CMU, 1990.

14. C. V. Lopes and S. K. Bajracharya. An analysis of modularity in aspect oriented
design. In AOSD ’05, pages 15–26, New York, NY, USA, 2005. ACM Press.

15. S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, and E. Gansner. Using automatic
clustering to produce high-level system organizations of source code. In Proceedings
of the 6th International Workshop on Program Comprehension (IWPC’98), pages
45–52, June 1998.

16. D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–8, Dec. 1972.

17. K. Sullivan, Y. Cai, B. Hallen, and W. G. Griswold. The structure and value of
modularity in software design. SIGSOFT Software Engineering Notes, 26(5):99–
108, Sept. 2001.

18. K. Sullivan, W. Griswold, Y. Song, and Y. C. et al. Information hiding interfaces
for aspect-oriented design. In ESEC/FSE ’05, Sept 2005.


