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Abstract

This report describes a Maple package created for exploring the techniques of Wino-
grad, Nussbaumer, and others for computing “fast” convolution algorithms. After cod-
ifying known convolution techniques into a common framework of bilinear algorithms
built from parameterized matrices and algebraic operators, Maple’s symbolic and al-
gebraic computation facilities are used to derive and manipulate these algorithms.

The package provides an infrastructure for generating, manipulating, testing, and
combining various convolution convolution algorithms within an interactive environ-
ment. The algorithms generated by the package can be exported to a domain-specific
language called SPL (Signal Processing Language) and then translated into efficient C
or FORTRAN code by the SPL compiler. By combining the strengths of Maple and the
SPL compiler the benefits of existing algebraic computation tools are obtained with-
out the need to embed high-performance compiler technology into a computer algebra
system.

The resulting enviroment allows for the systematic application of the algebraic
theory developed over the years to produce correct and efficient programs. Numerous
algorithmic choices can be tried, allowing for rapid testing of various optimizations to
find the best combinations of algorithms for a particular size convolution on a particular
computer. Furthermore, automatic code generation and algebraic verification provides
the ability to construct non-trivial examples with confidence that the resulting code is
correct.
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1 Introduction

Convolution is arguably one of the most important computations in signal processing. It
also has applications outside of signal processing including the efficient computation of prime
length Fourier Transforms, polynomial multiplication, and large integer multiplication. The
importance of convolution has led to much research on the design and computer implemen-
tation of fast algorithms for performing convolution.

The careful study of convolution algorithms began with S. Winograd’s investigation of the
complexity of convolution and related problems. Winograd proved a lower bound on the
number of multiplications required for convolution, and used the Chinese Remainder Theo-
rem to construct optimal algorithms that achieve the minimum number of multiplies [13, 14].
Unfortunately, to reach the theoretical minimum in multiplications often requires an inor-
dinate number of additions that may defeat the gain in multiplies. These results spurred
further study in the design and implementation of “fast” convolution algorithms. The re-
search on this problem over the last 25 years is summarized in several books ([9], [3], [2],
and [11]).

Despite all of the development however, many questions remain about these algorithms. The
main unanswered question is to determine the practicality of Winograd based algorithms
(A Winograd based algorithm in this report denotes an algorithm constructed using the
techniques introduced by Winograd) over the full range of input sizes. In particular, how do
the Winograd algorithms compare to fast Fourier transform (FFT) based algorithms using
the convolution theorem (See [11] for discussion of the convolution theorem). More generally,
of the various techniques that have been proposed, which lead to fast implementations, and
what is the best way to combine the various algorithms to optimize performance. One of
the reasons this has not been done is the difficulty in implementing Winograd algorithms
for general sizes, and the need to produce production quality implementations in order to
obtain meaningful comparisons. Moreover, in order to do a systematic search for the best
algorithm it is necessary to be able to fully explore different combinations of algorithms and
implementations.

The package provides an infrastructure for generating, manipulating, testing, and combining
various convolution convolution algorithms within an interactive environment. The algo-
rithms generated by the package can be exported to a domain-specific language called SPL
(Signal Processing Language) and then translated into efficient C or FORTRAN code by the
SPL compiler. By combining the strengths of Maple and the SPL compiler the benefits of ex-
isting algebraic computation tools are obtained without the need to embed high-performance
compiler technology into a computer algebra system.

The infrastructure has two components: a core component and a convolution component.
The core component contains basic matrix types and operations that can be used as a
foundation for an arbitrary class of algorithms. The convolution component is built upon
the core component and consists of symbols and algorithms for computing convolutions or
generating computer code to compute convolutions.
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This report is a discussion of the Maple convolution package; a companion paper [5] provides
a survey and algebraic basis for the convolution algorithms implemented here. Full source
code for the Maple package and an example worksheet can be found at www.spiral.net.
Documentation for SPL can be found in [15], and the latest version of the SPL compiler can
be obtained at: http://www.ece.cmu.edu/∼spiral.

This paper is organized as follows. Section 2 provides a brief survey and review of some
of the key algorithms contained in the convolution package. Section 2 provides a brief
introduction to SPL and the SPL compiler. The convolution package creates SPL code for
convolution algorithms, and the SPL compiler creates C or FORTRAN code from SPL code.
Finally, section 3 discusses the convolution package including calling conventions, and the
implementation details needed in order to extend the package.
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2 Overview of Convolution Algorithms

This section gives a brief overview of convolutions and a survey of some of the algorithms
contained in the Maple convolution package. A more detailed survey with complete proofs
and derivations can be found in [5].

2.1 Convolution from Three Perspectives

Convolution can be viewed from three different perspectives: as a sum, a polynomial product,
and a matrix operation. This allows polynomial algebra to be used to derive algorithms and
the corresponding matrix algebra for manipulating and implementing algorithms.

The linear convolution of the vectors u = (u0, . . . , uM−1) and v = (v0, . . . , vN−1) is a vector
of size M + N − 1. If both vectors are of the same size, M = N , the linear convolution is
said to be of size N .

Definition 1 (Linear Convolution)
Let u = (u0, . . . , uM−1) and v = (v0, . . . , vN−1). The i-th component of u ∗ v is equal to

(u ∗ v)i =
N−1∑

k=0

ui−kvk, 0 ≤ i < 2N (1)

If the vectors u = (u0, . . . , uM−1) and v = (v0, . . . , vN−1) are mapped to the polynomials

u(x) =
M−1∑
i=0

uix
i and v(x) =

N−1∑
j=0

vjx
j,

then u ∗ v is mapped to the polynomial u(x)v(x).

The linear convolution sum is also equivalent to the following matrix vector multiplication.

u ∗ v =




u0

u1 u0
... u1

. . .

uM−1
...

. . . u0

uM−1 u1

. . .
...

uM−1




v (2)

Cyclic convolution of two vectors of size N is obtained from linear convolution by reducing

the indices i− k and k in Equation 1 modulo N .
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Definition 2 (Cyclic Convolution)
Let u = (u0, . . . , uN−1) and v = (v0, . . . , vN−1). The i-th component of the cyclic convolution
of u and v, denoted by u ~ v, is equal to

(u ~ v)i =
N−1∑

k=0

u(i−k) mod Nvk, 0 ≤ i < N (3)

Cicular convolution is obtained by multiplying the polyomials corresponding to u and v and
taking the remainder modulo xN − 1. It can also be recast in terms of matrix algebra, as
the product of a circulant matrix CircN(u), times the vector v,

u ~ v =




u0 uN−1 uN−2 . . . u1

u1 u0 uN−1 . . . u2
...

. . . . . . . . .
...

uN−2 . . . u1 u0 uN−1

uN−1 uN−2 . . . u1 u0




v.

This matrix is called a circulant matrix because the columns of the matrix are all obtained
by cyclically rotating the first column.

A circulant matrix is generated by the shift matrix

SN =




0 . . . 0 0 1
1 0 . . . 0 0
0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0




, (4)

which is so named because when it is applied to a vector it cyclically shifts the elements. It
is easy to verify that

CircN(u) =
N−1∑
i=0

uiS
i
N . (5)

It is clear that a cyclic convolution can be created from a linear convolution, just by applying
an additional reduction matrix, (see example 3 for an example of a reduction matrix), but it
is also possible to create a linear convolution of size N by zero padding a cyclic convolution
of size 2N − 1 In fact, in [11], Tolimieri discusses a method for creating a linear convolution
via a cyclic convolution of size 2N − 2.

2.2 Bilinear Algorithms

A bilinear algorithm is useful way to describe convolution algorithms since it provides a
convenient way to operate on, combine, and manipulate convolution algorithms [13, 14].
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Definition 3 (Bilinear Algorithm)
A bilinear algorithm is a triple (C, A,B) of matrices, where the column dimension of C
is equal to the row dimensions of A and B. When applied to a pair of vectors u and v
the bilinear algorithm (C, A,B) computes C (Au •Bv), where • represents componentwise
multiplication of vectors.

Example 1 Consider a two-point linear convolution

[
u0

u1

]
∗

[
v0

v1

]
=




u0v0

u0v1 + u1v0

u1v1


 .

This can be computed with three instead of four multiplications using the following algorithm.

1. t0 ← u0v0;

2. t2 ← u1v1;

3. t1 ← (u0 + u1)(v0 + v1)− t0 − t1;

The desired convolution is given by the vectors whose components are t0, t1, and t2. This
algorithm is equivalent to the bilinear algorithm

tc2 =







1 0 0
−1 1 −1
0 0 1


 ,




1 0
1 1
0 1


 ,




1 0
1 1
0 1





 . (6)

This algorithm is known as the Toom-Cook algorithm [12, 4]. This particular example can be
generated by evaluating uv at values 0, 1, and ∞ and then interpolating. See [5] for complete
details of this example as well as a complete derivation of the Toom-Cook algorithm.

The Toom-Cook algorithm is closely related to the convolution theorem, which provides a
method for computing cyclic convolutions via the Fourier Transform (see [11, 5]).

In a few rare cases, the standard method of multiplying polynomials learned in high school
might be the best choice for a linear convolution algorithm. This can be turned into a
bilinear algorithm of matrices in the obvious way.
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Example 2 A 3× 3 linear convolution given by the Standard Algorithm is :

sb3 =







1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1




,




1 0 0
0 1 0
1 0 0
0 0 1
0 1 0
1 0 0
0 0 1
0 1 0
0 0 1




,




1 0 0
1 0 0
0 1 0
1 0 0
0 1 0
0 0 1
0 1 0
0 0 1
0 0 1







= (sb3[C], sb3[A], sb3[B])

Definition 4 (Bar Notation)
Let A(x) = a0 + a1x + a2x

2 + . . . + anxn we will denote by A(x) the equivalent vector[
a0 a1 . . . an

]T

Cyclic convolutions can be created from linear convolutions via a reduction matrix. Let
M(f(x)) denote the reduction matrix such that M(f(x))A(x) = A(x) mod f(x).

Example 3 Composing

M(x2 − 1) =

[
1 0 1
0 1 0

]
,

with the Toom-Cook bilinear algorithm of (6), yields:

(M(x2 − 1)C2, A2, B2) =




[
1 0 1
−1 1 −1

]
,




1 0
1 1
0 1


 ,




1 0
1 1
0 1





 ,

which is a bilinear algorithm for 2-point cyclic convolution.

2.3 Kronecker Product and Combining of Linear Convolutions

Definition 5 (Kronecker Product) The Kronecker product, of an m1×n1 matrix A and
a m2 × n2 matrix B is the m1m2 × n1n2 block matrix whose (i, j) block is obtained by
multiplying the (i, j) element of the matrix A by the matrix B. The Kronecker product will
be denoted by ⊗.

The Kronecker product can be used to combine small linear convolution algorithms into larger
ones in an efficient manner. This is important, because the Kronecker product of smaller
convolution algorithms will generally use fewer operations than a direct larger convolution
algorithm. For example combining a Toom-Cook algorithm of size 2 with a Toom-Cook
algorithm of size 3, creates a linear convolution of size 6 that uses many fewer operations
than a Toom-Cook convolution of size 6.
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Theorem 1 (Kronecker Product of Linear Convolutions) Let Lm and Ln be linear
convolution algorithms of size m and n respectively. Then Om,n(Lm⊗Ln) is a linear convo-
lution algorithm of size mn, where Om,n is a sparse (2m − 1)(2n − 1) × (2mn − 1) matrix.
The non-zero entries are equal to one and occur in locations jm + i, j(2m − 1) + i and
jm + i, (j − 1)(2m− 1) + m + i for 0 ≤ j < 2n− 1 and 0 ≤ i < m− 1.

The proof and an example can be found in [5].

2.4 Operations on Bilinear Algorithms

Let B1 = (C1, A1, B1) and B2 = (C2, A2, B2) be two bilinear algorithms. The following
operations are defined for bilinear algorithms.

1. [direct sum] B1 ⊕ B2 = (C1 ⊕ C2, A1 ⊕ A2, B1 ⊕B2).

2. [Kronecker product] B1 ⊗ B2 = (C1 ⊗ C2, A1 ⊗ A2, B1 ⊗B2).

3. [product] B1B2 = (C2C1, A1A2, B1B2), assuming compatible row and column dimen-
sions.

As a special case of the product of two bilinear algorithms, let P and Q be matrices and
assume compatible row and column dimensions.

PB1Q = (PC1, A1Q,B1Q).

An additional property that will be required is known as the commutation theorem.

Theorem 2 (Commutation Theorem)
Let A be an m1 × n1 matrix and let B be an m2 × n2 matrix. Then

Lm1m2
m1

(A⊗B)Ln1n2
n2

= (B ⊗ A)

Here L is a permutation matrix known as a stride permutation, (see [5]), so that the com-
mutation theorem means that the Kronecker product is almost commutative; that is, the
arguments can be commuted provided additional permutations are applied to the inputs
and outputs. This is useful since it is often the case that A⊗ B uses fewer operations than
B⊗A, so the commutation theorem can provide a reduced operation count when combining
convolution algorithms. The proof of the commutation theorem can be found in [6]. See [5]
for additional details.
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2.5 Winograd Convolution Algorithm and Prime Power Algorithm

The polynomial version of the Chinese Remainder provides a decomposition of a polynomial
algebra, C[x]/f(x) into a direct product of polynomial algebras.

Theorem 3 (Chinese Remainder Theorem)
Assume that f(x) = f1(x) · · · ft(x) where gcd(fi(x), fj(x)) = 1 for i 6= j. Then the poly-
nomial algebra modulo f(x) can be decomposed into a direct product of polynomial algebras
modulo the factors of f(x).

C[x]/f(x) ∼= C[x]/f1(x)× · · · × C[x]/ft(x)

Winograd’s algorithm for computing cyclic convolution follows from the Chinese Remainder
theorem when applied to the irreducible rational factors of the polynomial XN − 1. The
irreducible rational factors of xN − 1 are called cyclotomic polynomials.

The cyclotomic polynomials can be defined recursively from the formula xN−1 =
∏

d|N Φd(x),

or alternatively ΦN(x) =
∏

gcd(j,N)=1(x−ωj
N), where ωN is a primitive N -th root of unity. It

follows that deg(ΦN(x)) = φ(N), where φ is the Euler φ function. It is well known [7] that
ΦN(x) has integer coefficients and is irreducible over the rationals.

Stated simply, since xN−1 =
∏

d|N Φd(x), Winograd’s algorithm computes an N -point cyclic

convolution by applying the CRT to convolutions modulo φd(x) with d|N . For example since
x4 − 1 = (x2 + 1)(x− 1)(x + 1), a 4-point cyclic convolution can be created from a 2-point
and two 1-point cyclic convolutions using the following theorem.

Theorem 4 (Winograd Convolution Algorithm)
Let Cf denote a bilinear algorithm that multiplies elements of C[x]/f(x). Then

C = R−1


⊕

d|n
CΦd(x)


 R (7)

where R = [Rd1 Rd2 . . . Rdk
]T and Rdi

f = f(x) mod Φdi
(x) is a bilinear algorithm for

N-point cyclic convolution.

Using the 2-point cyclic convolution algorithm in Example 3 and the cyclotomic polynomials
Φ1(x) = (x−1), Φ2(x) = (x+1), and Φ4(x) = (x2+1) the following 4-point cyclic convolution
algorithm is obtained.

Example 4



R−1
4




1
1

1 0 −1
−1 1 −1


 ,




1
1

1 0
1 1
0 1




R4,




1
1

1 0
1 1
0 1




R4




,
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where R4 is easily verified to be

R =




1 1 1 1
1 −1 1 −1
1 0 −1 0
0 1 0 −1


 .

A complete derivation with proofs of the Winograd algorithm can be found in [5].

When N = pk (p prime), the Winograd algorithm has additional structure. This structure,
discussed in [10] follows from the following two properties of cyclotomic polynomials: Φp(x) =

xp−1 + · · · + x + 1 and Φpk(x) = Φp(x
pk−1

). This additional structure provides an efficient
way to compute Rpk .

Theorem 5 Let Rpk be the pk × pk projection matrix modulo {Φpi(x), i = 0, . . . , k}. Then

Rpk =

[
1p ⊗Rpk−1

Gp ⊗ Ipk−1

]
,

where Gn is the (n− 1)× n matrix:

Gn =




1 −1
1 −1

. . . −1
1 −1


 ,

and 1n is the 1× n matrix filled with 1′s. Moreover, Rpk = (Rpk−1 ⊕ I(p−1)pk−1)(Rp ⊗ Ipk−1).

A complete proof as well as a derivation of the inverse of RpK can be found in [5].

Example 5 A bilinear algorithm for a cyclic convolution of size 27 is (C, A,B), where:

C = R−1
33




1
M(x2 + x + 1)L2[C]

M(x6 + x3 + 1)L6[C]
M(x18 + x9 + 1)L18[C]




A =




1
L2[A]

L6[A]
L18[A]


 R33 and B =




1
L2[B]

L6[B]
L18[B]


 R33 .

where Ln is a bilinear algorithm for a linear convolution of size n of any method, and

R33 =




1 1 1
1 0 −1
0 1 −1

I24










1 1 1
1 0 −1
0 1 −1


⊗ I3

I18









1 1 1
1 0 −1
0 1 −1


⊗ I9
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2.6 Matrix Exchange

In filtering applications it is often the case that one of the inputs to be cyclically convolved
is fixed. Fixing one input in a bilinear algorithm leads to a linear algorithm. When this is
the case, one part of the bilinear algorithm can be precomputed and the precomputation
does not count towards the cost of the algorithm. Let (C,A, B) be a cyclic convolution and
assume that the first input vector x is fixed. Then the computation (C,A, B)(x, y) is equal to
(C diag(Ax)B)y, where diag(Ax) is the diagonal matrix whose diagonal elements are equal
to the vector Ax. Thus the resulting linear algorithm is given by the matrix factorization
C diag(Ax)B.

In most cases the C portion of the bilinear algorithm is much more costly than the A portion
of the algorithm, so it would be desirable if this part could be precomputed. Given a bilinear
algorithm for a cyclic convolution, the matrix exchange property allows the exchange of the
C and A matrices.

2.7 The Agarwal-Cooley and Split-Nesting Algorithms

The Agarwal-Cooley algorithm [1] uses the Kronecker product to create a larger cyclic con-
volution from smaller cyclic convolutions. The Split-Nesting algorithm, due to Nussbaumer
[9], follows directly from Agarwal-Cooley using simple properties of the tensor product.

Theorem 6 (Agarwal-Cooley Algorithm)
Assume gcd(m,n) = 1 and let Cm = (Cm, Am, Bm) and Cn = (Cn, An, Bn) be bilinear

algorithms for cyclic convolution of size m and n. Let Q−1
m,n be the permutation that maps i

to (i mod m)n+(i mod n). It follows that Q−1
m,n(Cm⊗Cn)Qm,n computes a cyclic convolution

of size mn.

Let R−1
m

(⊕k1

i=0 Cmi

)
Rm and R−1

n

(⊕k2

i=0 Cni

)
Rn be bilinear algorithms to compute m, and

n-point Winograd cyclic convolutions. Then combining Agarwal-Cooley with the Winograd
algorithm yields the bilinear algorithm

Q−1
m,n

(
R−1

m

(
k1⊕
i=0

Cmi

)
Rm

)
⊗

(
R−1

n

(
k2⊕

j=0

Cnj

)
Rn

)
Qm,n (8)

for computing an mn-point cyclic convolution, (provided gcd(m,n) = 1).

Rearranging this equation into a double sum of tensor products leads to the “Split-Nesting
Algorithm” which was first derived by Nussbaumer in [9], who observed that it requires fewer
additions then (8). The following theorem describes this transformation.
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Theorem 7 (Split Nesting) Let C =
⊕s−1

i=0 Ci and D =
⊕t−1

j=0Dj. Then

C ⊗ D = P−1

(
s−1⊕
i=0

t−1⊕
j=0

Ci ⊗Dj

)
P,

where P is a permutation.

See [5] for a complete derivation and proof.

Example 6 Let
C4 = R−1

4 (1⊕ 1⊕ C2)R4

and
C27 = R−1

27 (1⊕D2 ⊕D6 ⊕D18)R27,

where C2 = M(x2 + 1)L2, D2 = M(x2 + x + 1)L2, D6 = M(x6 + x3 + 1)L6, D18 = M(x18 +
x9 + 1)L18, be the algorithms for cyclic convolution on 4 and 27 points given in Examples 4
and 5. By Agarwal-Cooley,

Q−1
4,27(R

−1
4 (1⊕ 1⊕ C2)R4)⊗ (R−1

27 (1⊕D2 ⊕D6 ⊕D18)R27)Q4,27

is an algorithm for cyclic convolution on 108 points. The split nesting theorem transforms
this algorithm into

(Q−1
4,27(R

−1
4 ⊗R−1

27 )P−1

(1⊕D2 ⊕D6 ⊕D18)⊕ (1⊕D2 ⊕D6 ⊕D18)⊕ (C2 ⊕ C2 ⊗D2 ⊕ C2 ⊗D6 ⊕ C2 ⊗D18))

P (R4 ⊗R27)Q4,27

where P = I27 ⊕ I27 ⊕ P3 and P3 = (I2 ⊕ L4
2 ⊕ L12

2 ⊕ L36
2 )L54

27.

Note that in the example above choices made for the cyclic convolutions of size 4 and 27
required forced the use of certain linear algorithms in the computation of the size 108 cyclic
convolution. The improved split-nesting algorithm discussed in [5] overcomes this restriction
and allows substitution of the best linear algorithms at each stage of the computation.

In this section many convolution algorithms were introduced briefly, in order to make this
report self-contained. However, since this report is primarily about the Maple implementa-
tion, this section is deliberately brief. The net effect is not only a terse description of most
of the basic algorithms, but also a complete omission of most proofs. A complete discussion
of each of these methods, with proofs and numerous examples, can be found in [5].
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3 Maple Infrastructure

In this section, a Maple package for implementing the algorithms discussed in previous
sections is described. The implementation is based on a programming language called SPL
and a Maple infrastructure that aids in the creation and manipulation of SPL code. The
latest version of the SPL Compiler can be obtained at http://polaris.cs.uiuc.edu/ jxiong/spl/
and the latest version of the Maple package can be obtained at http://www.spiral.net.

3.1 Overview of SPL and the SPL Maple Package

Having codified known convolution techniques into a common framework of bilinear algo-
rithms built from parameterized matrices and algebraic operators, Maple’s symbolic and
algebraic computation facilities are used to derive and manipulate these algorithms. The
infrastructure provided by the package allows for the generation, manipulation, testing, and
combining of various convolution algorithms within an interactive environment. The algo-
rithms generated by the package can be exported to a domain-specific language called SPL
(Signal Processing Language) and then translated into efficient C or FORTRAN code by the
SPL compiler. By combining the strengths of Maple and the SPL compiler the benefits of ex-
isting algebraic computation tools are realized without the need to embed high-performance
compiler technology in a computer algebra system.

The resulting environment allows one to systematically apply the algebraic theory developed
over the years to produce correct and efficient programs. Numerous algorithmic choices can
be tried, allowing the user to rapidly test various optimizations to find the best combination
of algorithms for a particular size convolution on a particular computer. Furthermore, auto-
matic code generation and algebraic verification provides the ability to construct non-trivial
examples with confidence that the resulting code is correct.

3.1.1 SPL Language

This section briefly outlines the SPL language. Further details are available in [15], where,
in addition, an explanation of how SPL programs are translated to programs is provided.

SPL provides a convenient way of expressing matrix factorizations, and the SPL compiler
translates matrix factorizations into efficient programs for applying the matrix expression to
an input vector. SPL programs consist of the following: 1) SPL formulas, which are sym-
bolic expressions used to represent matrix factorizations, 2) constant expressions for entries
appearing in formulas; 3) “define statements” for assigning names to subexpressions; and 4)
compiler directives, which are used to change the behavior of the SPL compiler in some way
(e.g. to turn loop unrolling on or off). SPL formulas are built from general matrix construc-
tions, parameterized symbols denoting families of special matrices, and matrix operations
such as matrix composition, direct sum, and the tensor product. The elements of a matrix
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can be real or complex numbers. In SPL, these numbers can be specified as scalar constant
expressions, which may contain function invocations and symbolic constants like pi. For ex-
ample, 12, 1.23, 5*pi, sqrt(5), and (cos(2*pi/3.0),sin(2*pi/3)) are valid scalar SPL
expressions. All constant scalar expressions are evaluated at compile-time. SPL uses a prefix
notation similar to lisp to represent formulas. SPL code is compiled into C or FORTRAN
by invoking the SPL compiler and entering the lisp like SPL formulas interactively, or by
sending a text file of the SPL formulas to the SPL compiler.
General matrix constructions. Examples include the following.

• (matrix (a11 ... a1n)...(am1 ... amn)) - the m×n matrix [aij]0≤i<m, 0≤j<n.
• (sparse (i1 j1 ai1j1) ... (it jt aitjt)) - the m×n matrix where m = max(i1, . . . , it),

n = max(j1, . . . , jt) and the non-zero entries are aikjk
for k = 1, . . . , t.

• (diagonal (a1 ... an)) - the n× n diagonal matrix diag(a1, . . . , an).
• (permutation (σ1 ... σn)) - the n× n permutation matrix: i 7→ σi, for i = 1, . . . , n.

Parameterized Symbols. Examples include the following.

• (I n) - the n× n identity matrix In.
• (F n) - the n× n DFT matrix Fn.
• (L mn n) - the mn×mn stride permutation matrix Lmn

n .
• (T mn n) - the mn×mn twiddle matrix Tmn

n .

Matrix operations. Examples include the following.

• (compose A1 ... At) - the matrix product A1 · · ·At.
• (direct-sum A1 ... At) - the direct sum A1 ⊕ · · · ⊕ At.
• (tensor A1 ... At) - the tensor product A1 ⊗ · · · ⊗ At.
• (conjugate A P) - the matrix conjugation AP = P−1 ·A · P , where P is a permutation.

It is possible to define new general matrix constructions, parameterized symbols, and matrix
operations using a template mechanism. To illustrate how this is done, an example showing
how to add the stack operator to SPL is given. Let A and B be m× n and p× n matrices
respectively, then (stack A B) is the (m + p)× n matrix

[
A
B

]
.

Given a program to apply A to a vector and a program to apply B to a vector, a program to
apply (stack A B) to a vector is obtained by applying A to the input and storing the result
in the first m elements of the output and applying B to the input and storing the result
in the remaining p elements of the output. The following SPL template enables the SPL
compiler to construct code for (stack A B) using this approach. (This example is given to
illustrate that a process exists for adding new functionality to SPL; the reader need not be
concerned with the specific syntax.)
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(template (stack any any)

[$p1.nx == $p2.nx]

(

$y(0:1:$p1.ny_1) = call $p1( $x(0:1:$p1.nx_1) )

$y($p1.ny:1:$p0.ny_1) = call $p2( $x(0:1:$p1.nx_1) )

))

The first part of the template is the pattern (stack any any) which matches (stack A B)

where A and B match any SPL formulas. The code for A and B is accessed through the call

statements, where A is referenced as $p1 and B is referenced as $p2. The field nx refers to
the input dimension and ny refers to the output dimension ( 1 subtracts one).

3.1.2 SPL Maple Package

Programming directly in SPL is a cumbersome process, creating a need to provide an in-
teractive version of SPL in Maple (or some other interactive scripting environment). In
this environment, it is much easier to add new features and to extend the language, and it
is possible to write simple scripts, using Maple’s algebraic computation engine to generate
SPL code [8]. In particular, SPL was extended to include bilinear computations in addition
to linear computations. Also all of the parameterized matrices and bilinear algorithms dis-
cussed in Section 2 were added, and Maple’s polynomial algebra capabilities were exploited
to generate SPL objects obtained from the Chinese remainder theorem.

This implementation centers around the concept of an SPL object, which corresponds to a
multi-linear computation. SPL objects have a name, a type, (the default type is complex),
and fields that indicate the number of inputs as well as the input and output dimensions.
In addition, there may be a list of parameters which may be set to Maple expressions such
as an integer, list, or polynomial or other SPL objects. Since parameters include both
primitive data types and SPL objects, an SPL object can be used to represent general
matrix constructions, parameterized matrices, or operators. There are methods to construct
an SPL object, evaluate an SPL object to a matrix or a triple of matrices in the case of
bilinear algorithms, apply an SPL object, count the number of arithmetic operations used
by an SPL object, and export an SPL object. Once exported an SPL object can be compiled
by the SPL compiler.

SPL objects can be bound or unbound. An unbound object is a named, parameterized,
multi-linear map which does not have a specified method of computation (i.e. it does not
have an apply method). Alternatively, an SPL object may have an apply method, but be
considered unbound because one or more of its parameters are unbound. Unbound objects
can be bound by using a provided bind function. The bind function allows SPL objects to
be defined in terms of other SPL objects. Parameterized matrices and operators may be
defined using other parameterized matrices and operators. Since the SPL objects defining
an SPL object may themselves be unbound, bind may need to be applied recursively. It is
possible to specify the number of levels that bind is to be applied.
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Using unbound symbols has several advantages: 1) the size of an SPL expression can be sig-
nificantly shorter when symbols are not always expanded, 2) it is easier to see the structure
in a complicated formula if sub-formulas are named, 3) parameterized matrices and oper-
ators not available to the SPL compiler can be used provided a bind function is available
that defines them using formulas supported by the compiler, and 4) an SPL expression can
be constructed whose components are unspecified and therefore, alternative computation
methods can be used when applying an SPL object. The last point can be used to apply the
optimization techniques presented in Section 3.3.2.

3.2 Implementation Details of Core SPL Package

The implementation centers around the concept of an ‘SPL object’, which corresponds to
a linear or bilinear computation. (It is helpful to think of an SPL object as a matrix or
triple of matrices.) An SPL object can be unbound, which essentially means the object is a
placeholder or name for another (generally more complicated) SPL object.

3.2.1 Core SPL Commands

Since SPL is a language for creating algorithms for fast linear computations, the package
must necessarily contain the capability to apply SPL objects to vectors. The package also
contains many other capabilities for manipulating SPL objects. These capabilities, called
SPL commands, are shown here:

1. SPLEval(T:SPL object) Evaluates an SPL object into a corresponding matrix.

2. SPLApply(vecList:list,T:SPL object) Applies the SPL object to a list of one or
more vectors to obtain an output vector.

3. SPLCountOps(T:SPL object,[adds,muls,assignments]) Counts the number of op-
erations and assignments required to apply an SPL object to a vector. If adds, muls,

and assignments are included, the counts are returned in these variables, otherwise
the counts are printed to the screen.

4. SPLBind(T:SPL object,[bindLevel:posint] Binds an unbound SPL object to an
actual SPL object. If bindLevel is ∞ or omitted, it completely binds the object,
otherwise it binds the object bindLevel steps.

5. SPLPrint(T:SPL object,[bindLevel:posint],[fd:file descriptor]) Shows the
SPL object as a sequence of SPL commands. The default behavior is to print the
sequence to the screen, unless a file descriptor is provided as the third argument. A
bind-level can be passed in as an optional second argument. If a bind level is provided,
the command is equivalent to SPLPrint(SPLBind(T,bindLevel)).
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3.2.2 Core SPL Objects

The five commands act on SPL objects representing either linear or bilinear algorithms, so
a mechanism is needed to create SPL objects. In SPL, there are two fundamental types of
SPL objects: parameterized matrices and operators. For example, (I n) is a parameterized
matrix that takes a size n and returns an Identity matrix of the specified size, while (compose
...) is an operator that acts on two or more SPL objects. Within the Core package there
are parameterized matrices and operators as well, but the package is designed so that both
types of objects are represented with the same data structure. This allows for a very simple
implementation of the five basic commands discussed above.

The list of all available parameterized matrices and operators provided within the Core
Maple package can be found in tables 1 and 2.

Table 1: Core Maple parameterized Matrices

Bound Symbols
SPLDiagonal(d1,...,dn) Diagonal matrix of entries d1, . . . , dn

SPLFourier(n,omega) n× n Fourier Matrix
with optional argument omega

SPLIdentity(r,c) r × c (c optional) identity matrix
SPLAntiIdentity(n) n× n Anti-identity matrix
SPLMatrix([[a11,a12,...],

[a21,a22,...],...]) Entry specified matrix
SPLPermutation([p1,...,pn]) Permutation matrix
SPLPermutationInv([p1,...,pn]) Inverse or reverse permutation Matrix
SPLSparse([[i,j,aij],...]) Sparse matrix with non-zero entries specified
SPLStride(mn,n) Stride permutation
SPLTwiddle(n,[omega]) Twiddle matrix
SPLZeroMatrix(r,c) r × c zero matrix
Unbound Symbols
SPLOnes(m,n) m× n matrix with all entries equal to 1.

SPLBilinear is an unusual operator that warrants further explanation. This operator oper-
ates on a set of 3 SPL objects to represent a bilinear algorithm. Note that all other operators
(SPLCompose, SPLTensor, etc.) can operate on bilinear algorithms as well as linear algo-
rithms (matrices), and that if the input is a linear algorithm then the output will be linear
algorithms, and similarly if the input is a bilinear algorithm, then the output will be bilin-
ear. Again, a bilinear algorithm is simply a triple of linear algorithms, and the only way to
convert a bilinear algorithm to a linear algorithm is to apply a single vector to one of the
two inputs.

Implementation of Bound Symbols and Operators in the Core Package

The package was built so that new symbols and operators could be added with relative ease,
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Table 2: Core Maple Operators

Bound Operators
SPLAdd(m1,...,mn) Add SPL ojects
SPLCompose(m1,...,mn) Compose SPL objects
SPLConjugate(m,Pinv,P) Equivalent to SPLCompose(Pinv,m,P)
SPLDirectSum(m1,...,mn) Direct sum of SPL objects
SPLInverse(m) Inverse of SPL object
SPLTensor(m1,...,mn) Tensor product of SPL objects
SPLTranspose(m) Transpose of SPL object
Unbound Operators
SPLBilinear(c,a,b) Create a bilinear object from 3 SPL objects
SPLAugmentMatrix(m1,...,mn) Augment matrices
SPLStackMatrix(m1,...,mn) Stack matrices
SPLConvertPerm(P) Converts an SPL expression P, that represents a

sequence of operations on permutations,into a
single permutation. (e.g. SPLTensor(p1, p2)
can be converted to a single permutation)

SPLTensorI(m1,...,mn) (m1 ⊗ I)(I ⊗m2 ⊗ I) . . . (I ⊗mn)
SPLCommuteTensorI(m1,m2) Commutation theorem for linear

and bilinear algorithms

and so that new symbols would not require changes to existing symbols and operators. In
order to gain that flexibility, all new objects must provide a constructor that returns an SPL
object, and each object must supply its own Apply, Eval, Print, and Count functions. In this
way, nothing is assumed about SPL objects by the package, and thus there are no built-in
limitations.

As mentioned above, in the SPL language, there are two types of objects: symbols and
operators. However, removing this distinction simplifies the implementation and provides a
more uniform view; in later sections it will be shown that the implementation of convolution
algorithms is equivalent to writing down SPL objects as one might write down the formulas
for each convolution algorithm found in Section 2. It is therefore useful to think generically
of SPL objects rather than symbols and operators. in the Maple package all SPL objects,
whether operators or symbols are treated the same and implemented in the same manner.

Every SPL object must have the following fields defined within its constructor:

1. apply - This is a pointer to an apply function for the object. The apply function
allows the user to apply a an object to a vector.

2. bind - This is a pointer to a bind function. For bound objects this is set to NULL,
for unbound objects this points to a function that will rewrite the unbound object into
a sequence of bound objects.
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3. countOps - This is a pointer to a function that counts the number of operations
required to apply the object to a vector.

4. eval - This is a pointer to an evaluation function, that will display the object as a
matrix, or triple of matrices if the object is bilinear.

5. inv - This is a pointer of a function that will create the objects inverse when it exists.
(Note that inverse and transpose are not implemented in the SPL compiler.)

6. print - This is a pointer to a function that prints the object into SPL code.

7. vecInputs - This specifies whether the object accepts 1 vector (linear), 2 vectors,
(bilinear) etc. Although only linear and bilinear objects are currently supported, there
is no reason why the package couldn’t be slightly modified to support trilinear and
multilinear objects.

8. trans - This is a pointer to a function that can create an object’s transpose.

9. name - A name for the object (e.g. compose, matrix, sparse, etc.). This is the
name printed by the print function, and corresponds to a name recognized by the SPL
compiler in the case of bound objects.

10. rowdim - Row dimension of the object, or row dimension of the C component of a
bilinear algorithm.

11. coldim - Column dimension of the object, or column dimension of the A and B
components of a bilinear algorithm.

12. parameters - Parameters of the object. For example for Identity the parameters
will be the row and column dimension, while for matrix the parameters will be a list
of rows.

13. numParameters - The number of parameters. This is useful for cases such as compose,
where there can be a variable number of input parameters.

14. bound - Is the object bound? As discussed below, the existence of a bind function is
not sufficient to determine whether an object is bound. (This parameter and the next
parameter could be avoided by using an isBound function, but instead these items are
stored to improve speed.)

15. parametersBound - Are an objects parameters bound? For example an object might
be a composition of several unbound SPL objects.

In short, an SPL object is simply a Maple table (a Maple table is basically an associative
array, see [8]) with these 15 fields defined as well as the corresponding eval, apply, and other
functions provided. It is useful to conceptually think of an SPL object as a table with these
15 fields, however to save space the first eight fields in the list above (which are static) are
stored in a separate associative array indexed by the object’s name, so that only the next
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seven fields actually have to be stored in the object’s table. This implementation can lead
to substantial savings in the size of the table used to store an SPL object. For example, for
large convolution algorithms it is not uncommon to have more than 100 identity matrices
involved in the computation. By storing the eight static fields, more than 800 objects are
removed from the SPL object table. (Actually the savings would be larger, because the same
system is used for all symbols and operators).

To make the discussion clearer, consider the implementation of SPLIdentity. The complete
code for SPLIdentity is shown below. The entries to the global table symTabl are assigned
when the package is loaded. Whenever an identity object is needed, the user calls the
constructor SPLIdentity with the desired dimensions as parameters. Since the constructor
does little more than check for errors and fill in the seven variable fields discussed above,
the constructor for identity is very similar to the constructors for most other SPL objects.
All of the functionality of the SPL objects are defined in the functions pointed to within the
symbol table as is shown here.

#####################################################################

# Identity Matrix

# Inputs:

# n : positive integer.

# Notation: (I m n) or (I n)

# Properties: permutation, symmetric.

# Definition (I n) i -> i.

#####################################################################

symTabl["I"][apply] := applyIdentity;

symTabl["I"][bind] := NULL;

symTabl["I"][countOps] := countOpsIdentity;

symTabl["I"][eval] := evalIdentity;

symTabl["I"][inv] := invIdentity;

symTabl["I"][print] := defaultSymPrint;

symTabl["I"][vecInputs] := 1;

symTabl["I"][trans] := transIdentity;
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# Constructor for symbol. Creates an SPL object.

# Inputs: Symbol parameters m=rowdim, args[2]=n=coldim (optional).

SPLIdentity := proc(m::posint) local t,n;

if nargs > 1 then

n := args[2];

if (not type(n,posint)) then

ERROR("arguments to SPLIdentity should be positive integers");

fi;

else

n := args[1];

fi;

t := table(); t[name] := "I";

t[rowdim] := eval(m); t[coldim] := eval(n);

t[parameters] := [eval(m),eval(n)]; t[numParameters] := 2;

t[bound]:= true; t[parametersBound] := true;

RETURN(eval(t));

end;

#transpose of an identity

transIdentity := proc(U) local t;

t := SPLIdentity(U[parameters][2],U[parameters][1]);

RETURN(eval(t));

end;

#operation count for identity; note no adds or multiplications for

#identity, only assignments

countOpsIdentity:= proc(t,adds::evaln,muls::evaln,assigs::evaln);

assigs := eval(assigs) + t[parameters][1];

end;

#inverse of identity = identity

invIdentity := proc(U);

if (U[parameters][1]<>U[parameters][2]) then

ERROR("Inverse doesn’t exist - invIdentity")

else

RETURN(eval(U));

fi;

end;

# Evaluate as a matrix

evalIdentity := proc(U) local m,n,i;

m := U[parameters][1]; n := U[parameters][2];

RETURN(linalg[matrix](m,n,(i,j) -> if (i=j) then 1 else 0 fi));

end;
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# Apply Identity to an input vector.

applyIdentity := proc(veclist,T) local x,y,i;

x := veclist[1];

if (linalg[vectdim](x) <> T[coldim]) then

ERROR("Incompatible dimensions");

fi;

y := linalg[vector](T[rowdim],0);

for i from 1 to min(T[rowdim],T[coldim]) do

y[i] := x[i];

od;

RETURN(eval(y));

end;

###############################################################

# End Identity

###############################################################

Some SPL objects take other SPL objects as parameters (e.g. SPLCompose, SPLDirectSum,
SPLTensor and others). Since these parameters may not be bound, the parametersBound

field is not automatically set to true as in the identity example above, but instead is set with
the function areParametersBound which checks each parameter to see if it is bound. If a
typically bound object (such as SPLCompose) contains unbound parameters, it is considered
unbound and its bound field is set to false. If on the other hand the parameters are bound,
the bound field is set to true for a bound operator. It is therefore not possible to tell whether
an object is bound by checking for a bind function. See section 3.1.2 for a discussion of the
advantages of unbound objects. An example of a typical bind function is provided by the
example for SPLCompose shown here.

#bindCompose - do a one step bind of a compose object.

# input: SPLCompose object U = SPLCompose(p1,p2,...,pk)

# output: t = SPLCompose(Bind1(p1),Bind1(p2),...,Bind1(pk)).

bindCompose := proc(U) local t;

if (U[bound] = false) then

t := SPLCompose(op(map(SPLBind1,eval(U)[parameters])));

RETURN(eval(t));

else

RETURN(eval(U));

fi;

end;

SPLBind1 := proc(U) local t;

t := SPLBind(U,1);

RETURN(eval(t));

end;
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Note that since SPLCompose is a bound object in general, if its bound field is false that must
mean that one or more of the parameters are unbound. The bind function therefore binds
each of the parameters one level.

SPL objects that allow SPL objects as parameters must also handle the apply, eval, print,
and countOps functions differently than in the identity example above. These functions must
be called recursively on the parameters, rather than directly on the object itself. While the
eval function for a parameterized matrix such as SPLIdentity simply created an identity
matrix, the eval function for an operator must create matrices for each of its parameters
and then operate on them. For example, the eval function for SPLCompose evaluates all
of its parameters and then multiplies them together as in the code example below. The
code for apply, print, and countOps operates on the parameters in a similar manner. The
code for SPLDirectSum, SPLTensor, and other bound bound objects that can have unbound
parameters is analogous.

# Evaluate composition of SPL objects as a matrix

# Inputs: SPLObject U with U[parameters]=A1,A2,...,An

# output: matrix representing A1A2...An

evalCompose := proc(U)

local i;

if U[numParameters] = 1 then

RETURN(eval(SPLEval(U[parameters][1])));

else

RETURN(linalg[multiply](seq(SPLEval(U[parameters][i]),

i=1..U[numParameters])));

fi;

end:

Implementation of the Five SPL Commands

Since the user provides eval, apply, bind, print, and countOps functions for each object
created, implementing the 5 basic commands consists of little more than calling the provided
functions on the SPL object of interest. For example evaluation of an SPL object U can be
accomplished with the line RETURN(symTabl[U[name]][eval](U)); Here, U’s name is used
to look up its eval function within the symbol table and then that function is called with U

as a parameter. This works of course, because functions are first class objects in Maple.

In actuality, the code for SPLEval is slightly more complicated, because unbound objects
cannot be immediately evaluated. The complete code for SPLEval is shown below.

#SPLEval - Evaluate a SPL Object

# input: an SPL object U representing a sequence of SPL commands

# output: a matrix, or in the case of a bilinear object a list of

# 3 matrices.
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SPLEval := proc(U) global symTabl;

local i;

if (U[bound]=false) then

RETURN(SPLEval(SPLBind(U)));

fi;

RETURN(symTabl[U[name]][eval](U));

end;

SPLBind is only slightly more complicated. This is because it must handle multiple bind
levels and check for errors.

#SPLBind - Bind an unbound object or algorithm to an actual SPL object

SPLBind := proc(T) global symTabl;

local i,X,bindLevel;

if (T[bound] = true) then

RETURN(eval(T));

fi;

if (T[bound] = false) then

if (nargs > 1) then

bindLevel := args[2];

else

bindLevel := infinity;

fi;

X := eval(symTabl[T[name]][bind])(T); #bind T one level

if (bindLevel > 1) then

RETURN(SPLBind(eval(X),bindLevel-1));

else

RETURN(eval(X));

fi;

else

ERROR("you are trying to bind a non-spl object");

fi;

end;

Two Special Case Operators: SPLTranspose and SPLInverse

Since transpose and inverse can not be implemented via any supported SPL symbol or op-
erator, (without adding new templates to the SPL compiler), they must be defined when
defining a symbol or operator. Thus when s is a symbol, SPLTranspose(s) returns, what-
ever was defined for the transpose of the symbol when it was defined. The same is true for
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SPLInverse. When s is an operator or sequence of operators, SPLTranspose(s) is imple-
mented as a rewrite rule that uses the definition of the transpose of the operator to rewrite
the expression in terms of transposes of symbols, and then applies the transpose to the sym-
bols as before. For example, let a, b be two arbitrary symbols, with aT, bT their respective
transposes defined at the time of a and b. Then:

SPLTranspose(SPLCompose(a,b))

=SPLCompose(SPLTranspose(b),SPLTranspose(a))

=SPLCompose(bT,aT).

Thus, the trans function for compose simply reverses the parameters and calls each pa-
rameter’s transpose function. Other operators work in a similar way, depending upon the
particular rewrite rule. SPLInverse is implemented in a similar manner.

Implementation of Unbound Symbols and Operators

Unbound operators and symbols offer a powerful way to both extend the language and to
simplify and add clarity to algorithms. An unbound object can be used whenever a symbol
or operator that is not contained in the SPL compiler is needed. To illustrate how bind can
be used to define an operator using existing operators and parameterized matrices, consider
the stack operator discussed in Section 3.1.1. In this case the operator will be extended to
take an arbitrary number of operands. Let Ai, i = 1, . . . , t be an mi×n matrix, and observe
that

(stack A1 ... At) =




A1
...

At


 =




A1

. . .

At


 (eT

t ⊗ In), (9)

where et is the 1× t matrix containing all ones.

In the case of an unbound operator or symbol, only 8 of the 15 fields are required for bound
symbols and operators as discussed above. The required fields for an unbound symbol or
operator are bind, name, parameters, numParameters, parametersBound, bound, rowdim,
and coldim.

The constructor SPLStackMatrix is typical of a constructor for an unbound operator; it
creates a Maple table to store the object, fills in the dynamic fields, and does some error
checking. The bind function, bindStack, uses the function stackk to construct the SPL
formula shown in (9). It uses the parameterized matrix (SPLOnes m n), which corresponds
to the m × n matrix whose elements are all equal to 1. This symbol can be defined using
SPLMatrix([seq([seq(1,j=1..n)],i=1..m)]). The complete code for the stack operator
is shown below.
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#################################################################

# stack matrix - similar to Maple’s stackMatrix operator.

# Inputs: A1, A2, ... , At = args[1], args[2],...,args[nargs]

# Notation: (stackMatrix A1 ... At)

#################################################################

symTabl["stack"][bind] := bindStack;

symTabl["stack"][print] := defaultOpPrint;

SPLStackMatrix := proc() global symTabl;

local T,i,l;

l := [seq(args[i],i=1..nargs)]; T := table();

T[name] := "stack"; T[numParameters] := nops(l);

T[parameters] := [seq(eval(l[i]),i=1..nops(l))];

T[parametersBound] := areParametersBound(T);

T[bound] := false;

if (T[parametersBound]) then

for i from 1 to nargs do

if (symTabl[args[i][name]][vecInputs]<>1) then

ERROR("SPLStackMatrix only works on linear objects");

fi;

od;

fi;

RETURN(eval(T));

end;

bindStack := proc(X) local T;

T := Table();

if (X[parametersBound] = true) then

T := stackk(seq(X[parameters][i],i=1..X[numParameters]));

else

T := SPLStackMatrix(op(map(SPLBind1,eval(X)[parameters])));

fi;

RETURN(eval(T));

end;

stackk := proc() local t,n,T;

n := args[1][coldim]; t := nargs;

T := SPLCompose(SPLDirectSum(seq(args[i],i=1..t)),

SPLTensor(SPLOnes(t,1),SPLIdentity(n)));

RETURN(eval(T));

end;

An unbound object can be created for any symbol or operator in an analogous manner. For
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example, virtually all of the objects in the convolution package discussed in Section 2 are
implemented as unbound objects.

3.2.3 Creating Packages that use the SPL Core Package

As previously mentioned, the SPL Core package provides a superset of SPL functional-
ity. The net result is that any application that uses matrix operations extensively can be
approached by building a package that takes advantage of the Core package. For example
Section 3.3 discusses a convolution package that builds upon the Core package, and illustrates
the Core package’s utility and flexibility. Numerous convolution algorithms are implemented
based entirely on matrix operations available via the Core package.

In short, the Core package was developed to be an interactive, flexible front-end for the
SPL language and compiler. Its use in this case is to provide a foundation for a convolution
library, but it was built with enough generality that it can be used as the foundation for a
wavelet package, a Fourier Transform package, or any other application whose algorithms
arise from structured matrix operations.

3.3 Implementation of Convolution Package

The convolution package contains implementations of all of the convolution algorithms dis-
cussed in Section 2. The core package contains all of the building blocks needed to create
parameterized matrices that are used by our convolution algorithms, so that creating con-
volution algorithms becomes equivalent to writing down formulas presented in Section 2. A
list of parameterized matrices or symbols that are used to create convolution algorithms can
be found in Table 3.

Implementing these symbols is considerably easier than implementing objects within the
core package. These matrices have all been defined by formulas derived in Section 2 so
that creating them within this package just becomes equivalent to writing down formulas.
For example, in Section 2.5 it was shown that the symbol Rpk used in the prime power
convolution algorithm could be defined recursively as

Rpk = (Rpk−1 ⊕ I(p−1)pk−1)(Rp ⊗ Ipk−1), (10)

where,

Rp =

[
1p

Gp

]
,

Gn is the (n− 1)× n matrix

Gn =




1 −1
1 −1

. . . −1
1 −1


 ,
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Table 3: Linear Objects Contained in the Convolution Package

AgCooleyP(m1,...,mn) Permutation matrix used by the Agarwal-Cooley method
AgCooleyPinv(m1,...,mn) Permutation matrix used by the Agarwal-Cooley method
circulant(v1,...,vn) n× n Circulant matrix acting on vector v.
CRT(vlen,l,indet) This is the Chinese Remainder Theorem; equivalent to

SPLStack(M(vLen,l[i],indet)).
Gn(p) G matrix used in Prime Power algorithm

M(vLen,g,indet) M is such that MA = A mod g
where length(A) = vLen.

overlap(m1,...,mn) Overlap matrix used in combining linear convolutions
R(poly,indet) Reduction matrix used by reduceBilin
Rader(p,conv) Returns a prime size Fourier Transform via a

p-1 point cyclic convolution
RaderQ(p,r) Rader permutation
RaderQt(p,r) Transpose of Rader permutation
Rpk(p,k) Reduction matrix used in Prime Power algorithm
RpkInv(p,k) Inverse of Rpk
Sn(n) n× n shift matrix
V(m,n,[points]) m× n Toom-Cook evaluation matrix
Vinv(m,n,[points]) Inverse of V

and 1n is the 1× n matrix filled with 1′s.

The code for RpK shown below follows directly from these formulas.

#################################################################

# Gn:This matrix is used to Generate Rpk

# inputs: n::posint

# output: n-1 x n matrix consisting of n-1 x n-1 identity matrix

# augmented with a column of -1’s

#################################################################

symTabl["Gn"][print] := defaultSymPrint;

symTabl["Gn"][bind] := bindGn;

Gn := proc(n)

local T;

T := table();

T[name] := "Gn";

T[rowdim] := n-1; T[coldim] := n;

T[parameters] := n;

T[bound] := false;

RETURN(eval(T));
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end;

bindGn := proc(s) local t,i,n,m;

n := s[parameters];

m := SPLAugmentMatrix(SPLIdentity(n-1),

SPLMatrix([seq([-1],i=1..n-1)]));

RETURN(eval(m));

end;

#################################################################

# Rpk:This matrix is used to Generate Rpk used by the prime power

# algorithm.

# Inputs: p,k:posints

# output: p^k by p^k R matrix - see JSC paper for details.

#################################################################

symTabl["Rpk"][print] := defaultSymPrint;

symTabl["Rpk"][bind] := bindRpk;

Rpk := proc(p,k)

local T;

T := table();

T[name] := "Rpk";

T[rowdim] := p^k; T[coldim] := p^k;

T[parameters] := [p,k];

T[bound] := false;

RETURN(eval(T));

end;

bindRpk := proc(s) local t,p,k;

p := s[parameters][1]; k := s[parameters][2];

if (k=1) then

t := SPLStackMatrix(oneN(p),Gn(p));

else

t := SPLCompose(SPLDirectSum(Rpk(p,k-1),

SPLIdentity(p^k - p^(k-1))),

SPLTensor(Rpk(p,1),

SPLIdentity(p^(k-1))));

fi;

RETURN(eval(t));

end;

Rpk also provides a good example of using bind levels to see the structure of the code, and
to determine that an algorithm is working as it should.
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Example 7 Consider R3
2 within the convolution package.

> R2_3 := Rpk(2,3);

R2_3 := table([

coldim = 8

parameters = [2, 3]

bound = false

name = "Rpk"

rowdim = 8

])

> SPLPrint(R2_3);

(Rpk 2 3 )

If R2 3 is bound one level, it looks like the following, (as expected from (10)).

> SPLPrint(R2_3,1);

(compose

(direct_sum

(Rpk 2 2 )

(I 4 4 ))

(tensor

(Rpk 2 1 )

(I 4 4 )))

Binding one more level shows that the second Rpk in the SPL code above can be defined
directly in terms of Gn.

> SPLPrint(R2_3,2);

(compose

(direct_sum

(compose

(direct_sum

(Rpk 2 1 )

(I 2 2 ))

(tensor

(Rpk 2 1 )

(I 2 2 )))

(I 4 4 ))

(tensor

(stack (1n 2 )(Gn 2 ))

(I 4 4 )))
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Note that even after binding three levels, there are still a number of SPL objects that cannot
be used by the SPL compiler (without additional templates) such as Rpk, stack, 1n, Gn. To
fully bind the code, use ∞ as the bind level in the print command as follows.

> SPLPrint(R2_3,infinity);

(compose

(direct_sum

(compose

(direct_sum

(compose

(direct_sum

(matrix ( 1 1) )

(compose

(tensor (matrix ( 1 1) )(I 1 1 ))

(direct_sum (I 1 1 )(matrix ( (-1)) ))))

(tensor (matrix ( 1)( 1) )(I 2 2 )))

(I 2 2 ))

(tensor

(compose

(direct_sum

(matrix ( 1 1) )

(compose

(tensor (matrix ( 1 1) )(I 1 1 ))

(direct_sum (I 1 1 )(matrix ( (-1)) ))))

(tensor (matrix ( 1)( 1) )(I 2 2 )))

(I 2 2 )))

(I 4 4 ))

(tensor

(compose

(direct_sum

(matrix ( 1 1) )

(compose

(tensor (matrix ( 1 1) )(I 1 1 ))

(direct_sum (I 1 1 )(matrix ( (-1)) ))))

(tensor (matrix ( 1)( 1) )(I 2 2 )))

(I 4 4 )))

The previous example illustrates the power of unbound objects and bind levels. Since SPL
code is like a mathematical assembly language, if SPL objects were always fully bound, even
a small convolution algorithm would consist of hundreds of lines of incomprehensible code.
Unbound objects and binding levels, allow the code to be easily understood and allows for
easy debugging of new objects.

Many of the linear objects shown in Table 3 are used to create the bilinear objects shown in
Table 4.
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Table 4: Bilinear SPL Objects Contained in the Convolution Package

AgCooley(c1,...,cn) Combines cyclic convolutions via the Agarwal-Cooley
method.

combineLin(l1,...,ln) Combines linear convolutions via tensor product
convThm(n) Returns cyclic convolution of size n via the convolution

theorem.
linearConv(n) Creates a placeholder for a size n linear convolution.

When binding, this placeholder will first look for an
entry in the hash-table; if none exists it will build a
linear convolution of the requested size.

primePowerAlg(p,k) Returns a pk-point cyclic convolution via the prime
power algorithm.

redimBilinLin(n, Modifies a bilinear algorithm to accept a smaller
colDim,newColDim) input size.

reduceBilin(bilin, Reduces a bilinear algorithm modulo a polynomial.
poly,indet)

splitNest(n) Returns a size n cyclic convolution via the split-
nesting method. Note that the improved split-
nesting algorithm uses the same procedure,
but with a modified hash table.

standardBilinCyc(n) Returns an n-point cyclic convolution via the standard
method.

standardBilinLin(n) Returns an n-point linear convolution via the
standard method.

TolimLin(n,M,indet) Returns an n-point linear convolution via the
Tolimieri method.

ToomCookLin(n) Returns an n-point linear convolution via the
Toom-Cook method.

ToomCookCyc(n) Returns an n-point cyclic convolution via the
Toom-Cook method.

WinogCRT(n,pList, Returns an n-point cyclic convolution via Winograd’s
bList,indet) Chinese Remainder Theorem method

WinogHash(n) Returns an n-point cyclic convolution via Winograd’s
method using linear algorithms from the hash table.

WinogStandard(n) Returns an n-point cyclic convolution via Winograd’s
method using Standard linear algorithms.

WinogToomCook(n) Returns an n-point cyclic convolution via Winograd’s
method using Toom-Cook linear algorithms.
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Again, because of the way in which the infrastructure was built, creating these algorithms
consists mainly of writing down the formulas derived in Section 2 and in [5]. For example,
recall that the prime power algorithm described by [10] was presented in Section 2.5 as

C
xpk−1

= R−1
pk

(
k⊕

i=0

CΦpi(x)

)
Rpk

where Cf represents the convolution C[x] mod f(x), and Φd(x) are cyclotomic factors of

xpk − 1.

The Maple code for generating the prime power algorithm follows directly from this formula
as follows:

symTabl["primePowerAlg"][print] := defaultSymPrint;

symTabl["primePowerAlg"][bind] := bindPrimePowerAlg;

#PrimePowerAlg - computes a p^k-point cyclic convolution via the

# Selesnick-Burris prime power algorithm.

#inputs: p,k - integers

#output: bilinear algorithm for p^k-point cyclic convolution.

primePowerAlg := proc(p::posint,k::posint) local t;

t := table();

t[name] := "primePowerAlg";

t[parameters] := [p,k];

t[bound] := false;

t[rowdim] := p^k;

t[coldim] := p^k;

RETURN(eval(t));

end;

primePowerDirectSum := proc(p::posint,k::posint) local t,cyc,l,i,n;

l := [linearConv([1])];

for i from 1 to k do

cyc := numtheory[cyclotomic](p^i,’x’);

n := degree(cyc);

l := [op(l),SPLCompose(M(2*n-1,cyc,’x’),linearConv([n]))];

od;

t := SPLDirectSum(op(l));

RETURN(eval(t));

end;

bindPrimePowerAlg := proc(s) local T,n;
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Table 5: Utility Routines Contained in the Convolution Package

cycConv(v1,v2) Computes a cyclic convolution of two vectors.
(Used for testing against other cyclic convolution algorithms)

fixedVecCount(b) Operation counts for a bilinear algorithm assuming 1 vector
fixed

linConv(v1,v2) Computes a linear convolution of two vectors.
(Used for testing against other linear convolution algorithms)

putLinConv( Stores a convolution algorithm of sizeList size into the hash
sizeList,bilin) table.

printLinHash() Prints out the contents of the hash-table.
resetLinHash() Empties out the hash table of stored linear convolution

algorithms.
splitNestNeeds( Shows a list of sizes for linear convolutions that will be

bilin) used for the split nesting method

RETURN(eval(SPLCompose(RpkInv(op(s[parameters])),

primePowerDirectSum(op(s[parameters])),

Rpk(op(s[parameters])))));

end;

Note the prime power algorithm is just the composition of a direct-sum of linear convolutions
modulo cyclotomic polynomials conjugated with the symbol Rpk presented above.

In addition to the bilinear and linear objects built into the convolution package, there are also
a number of utility routines used for testing convolution algorithms, for counting operations,
and for manipulating the hash table of linear convolutions that will be discussed in the next
section. Table 5 shows the utilities available within the convolution package.

3.3.1 The Linear Convolution Hash Table

Most cyclic convolutions are built from smaller linear convolutions; thus in order to reduce
operations or to create the fastest cyclic convolutions, a way of storing the linear convolutions
that use the fewest operations, or are the fastest in terms of run-time is needed. In this section
a hash table for storing and manipulating linear convolutions of various sizes is discussed.
Since many large convolution algorithms use multiple combinations of the same smaller
linear convolution algorithms, storing base algorithms in a hash table leads to an efficient
implementation. In Maple, the hash table is just a simple global variable that is initialized
upon loading of the convolution package. The following 3 Maple commands are executed to
initialize the hash table when the package is loaded.
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>linHash[1] := ToomCookLin(1):

>linHash[2] := ToomCookLin(2):

>linHash[3] := ToomCookLin(3):

The hash table is also used to store tensor products of linear convolutions since those
are used in the split-nesting and improved split-nesting algorithms. The public routine
putLinConv is used to store convolution algorithms within the hash table without directly
manipulating the global variable linHash. For example to store a 4-point linear convolu-
tion consisting of a two Toom-Cook linear convolutions of size two, the Maple command
putLinConv([4],combineLin(ToomCookLin(2), ToomCookLin(2))) is used. To store the
tensor product of two Toom-Cook linear convolutions of size two, the command
putLinConv([2,2],SPLTensorI(ToomCookLin(2),ToomCookLin(2))) is used. Note that
linHash[2,2] is not the same as linHash[4] because the latter is actually equivalent to
SPLCompose(overlap(2,2),linHash[2,2]).

The counterpart to putLinConv is getLinConv, which gives a linear convolution of a certain
size without accessing the hash table directly. Actually getLinConv does more than access
the hash table. For instance, if a size is requested that is not in the hash table, getLinConv
will create a placeholder for an algorithm of the requested size. If at bind time, there is no
entry in the hash table for that size, the bind function will create an algorithm.

Any size linear convolution can be created by combining convolutions and then reducing
dimensions, provided there is a hash table entry for a size 2 linear convolution. This can
easily be proved by induction: assume it is true for all linear convolutions up to size N ,
to show that it is true for a size N + 1 convolution. If N + 1 is prime than N + 2 = 2k
where k < N , so that there exist convolutions of size 2 and k that can be created via size
2 convolutions. By combining a size 2 and k convolution, a size N + 2 linear convolution is
created that can be used as an N + 1 convolution by reduction. If N + 1 is not prime, then
N +1 = mn, (since m < N and n < N , each of these can be created via size 2 convolutions),
so that an N + 1 point linear convolution by combining m and n point linear convolutions.

The full implementation of getLinConv and putLinConv that uses these ideas is shown
below:

###################################################################

# Linear Convolution Hash Table subroutines and setup.

###################################################################

symTabl["linearConv"][print] := defaultSymPrint;

symTabl["linearConv"][bind] := bindGetLinConv;

getLinConv := proc(sizeList)

local T,n,i,l,rdim;

T := table();

T[name] := "linearConv";

l := [];
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for i from 1 to nops(sizeList) do

if (sizeList[i] > 1) then

l := [op(l),sizeList[i]];

fi;

od;

if (nops(l) = 0) then

l := [1];

fi;

T[parameters] := eval(l); T[bound] := false;

n := sizeList[1]; rdim := 2*n-1;

for i from 2 to nops(sizeList) do

n := n*sizeList[i];

rdim := rdim*(2*sizeList[i]-1);

od;

T[coldim] := n; T[rowdim] := rdim;

RETURN(eval(T));

end;

bindGetLinConv := proc(T)

global linHash;

local n,A,B,C,row,t,i,j,k,sizeList,x;

sizeList := T[parameters];

if (linHash[op(sizeList)][bound] = true

or linHash[op(sizeList)][bound] = false ) then

t := linHash[op(sizeList)];

RETURN(eval(t));

fi;

if (nops(sizeList) > 1) then

linHash[op(sizeList)]:=SPLTensorI(seq(

getLinConv([sizeList[i]])

,i=1..nops(sizeList)));

else

n := sizeList[1];

if (isprime(n)) then

t := redimBilinLin(getLinConv([n+1]),n+1,n):

linHash[n] := eval(t);

RETURN(eval(t));

else

readlib(ifactors):

x := ifactors(n)[2];

x := x[nops(x)][1];

t := combineLin(getLinConv([x]),getLinConv([n/x]));

linHash[n] := eval(t);

RETURN(eval(t));

fi;
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fi;

end;

putLinConv := proc(sizeList,lin) global linHash;

linHash[op(sizeList)] := eval(lin);

end;

A call to printLinHash() shows the contents of the hash table, while resetLinHash()

resets the hash table to empty out all of the entries. Note that the latter call empties the
hash table but then fills the size 2 entry with a Toom-Cook algorithm to ensure that a size 2
entry always exists. If something other than a Toom-Cook algorithm is desired, the default
size 2 entry can be overridden by using putLinConv.

3.3.2 A Comprehensive Example

This last section shows how loading the linear convolution hash table in a specific way leads to
a convolution that minimizes operations. This is an illustration of the improved split-nesting
algorithm, which is just the split-nesting algorithm described in section 2.7, but where all
linear convolutions are replaced with those that minimize operations. In Example 6 it was
shown that the split-nesting algorithm for size 108 = 4× 27 was derived as follows:

Let
C4 = R−1

4 (1⊕ 1⊕ C2)R4

and
C27 = R−1

27 (1⊕D2 ⊕D6 ⊕D18)R27,

where C2 = M(x2 + 1)L2, D2 = M(x2 + x + 1)L2, D6 = M(x6 + x3 + 1)L6, D18 = M(x18 +
x9 + 1)L18, be the algorithms for cyclic convolution on 4 and 27 points given in Examples 4
and 5. By Agarwal-Cooley,

Q−1
4,27(R

−1
4 (1⊕ 1⊕ C2)R4)⊗ (R−1

27 (1⊕D2 ⊕D6 ⊕D18)R27)Q4,27

is an algorithm for cyclic convolution on 108 points. The split nesting theorem transforms
this algorithm into

(Q−1
4,27(R

−1
4 ⊗R−1

27 )P−1 (11)

(1⊕D2 ⊕D6 ⊕D18)⊕ (1⊕D2 ⊕D6 ⊕D18)⊕ (C2 ⊕ C2 ⊗D2 ⊕ C2 ⊗D6 ⊕ C2 ⊗D18))

P (R4 ⊗R27)Q4,27

where P = I27 ⊕ I27 ⊕ P3 and P3 = (I2 ⊕ L4
2 ⊕ L12

2 ⊕ L36
2 )L54

27.

Calling splitNest in the convolution package, gives an algorithm equivalent to equation 11.
The Maple session for creating a size 108 convolution follows:

> n := 4*27;
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n := 108

> s := splitNest(n):

> SPLPrint(s);

(compose

(AgCooleyP 4 27 )

(tensorI (RpkInv 2 2 )(RpkInv 3 3 ))

(compose

(convert2perm (direct_sum (L 27 1 )(L 27 1 )(L 54 2 )))

(direct_sum

(linearConv 1 )

(compose (M 3 x^2+x+1 x )(linearConv 2 ))

(compose (M 11 x^6+x^3+1 x )(linearConv 6 ))

(compose (M 35 x^18+x^9+1 x )(linearConv 18 ))

(compose (M 1 x+1 x )(linearConv 1 ))

(compose

(tensor (M 3 x^2+x+1 x )(M 1 x+1 x ))

(linearConv 2 ))

(compose

(tensor (M 11 x^6+x^3+1 x )(M 1 x+1 x ))

(linearConv 6 ))

(compose

(tensor (M 35 x^18+x^9+1 x )(M 1 x+1 x ))

(linearConv 18 ))

(compose (M 3 x^2+1 x )(linearConv 2 ))

(compose

(tensor (M 3 x^2+x+1 x )(M 3 x^2+1 x ))

(linearConv 2 2 ))

(compose

(tensor (M 11 x^6+x^3+1 x )(M 3 x^2+1 x ))

(linearConv 6 2 ))

(compose

(tensor (M 35 x^18+x^9+1 x )(M 3 x^2+1 x ))

(linearConv 18 2 )))

(convert2perm (direct_sum (L 27 27)(L 27 27)(L 54 27))))

(tensorI (Rpk 2 2 )(Rpk 3 3 ))

(inverse (AgCooleyP 4 27 ))).

If the convolution will be used in a filtering application with the matrix exchange property
applied, the following operation count is obtained using the default hash table:
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> fixedVecCount(s);

B Adds: 1407, B Muls: 0, B Assigs: 3866

At Adds: 1769, At Muls: 0, At Assigs: 4611

haddamards: 470, Total Ops: 3646.

The idea of the improved split-nesting algorithm is that all instances of linear convolutions
and tensor products of linear convolutions are replaced with linear convolutions that minimize
the number of operations. To see which hash table entries are used by the algorithm, use:

> splitNestNeeds(s);

(linearConv 1 )

(linearConv 2 )

(linearConv 6 )

(linearConv 18 )

(linearConv 1 )

(linearConv 2 )

(linearConv 6 )

(linearConv 18 )

(linearConv 2 )

(linearConv 2 2 )

(linearConv 6 2 )

(linearConv 18 2 ).

It can be shown that for a size 6 linear convolution, using a standard algorithm of size 3
requires fewer operations than a Toom-Cook of size 3, while for size 18, using both a standard
algorithm of size 3 and a Toom-Cook of size 3 is better than using either alone. These points
as well as using a size 36 linear convolution as the basis for [18,2] are discussed fully in [5].
Below are the hash entries used to minimize the operation count.

> tc2:=ToomCookLin(2): tc3:=ToomCookLin(3): sb3:=standardBilinLin(3):

> putLinConv([2],tc2):

> putLinConv([6],combineLin(sb3,tc2)):

> putLinConv([18],combineLin(sb3,tc2,tc3)):

> putLinConv([2,2],SPLTensorI(tc2,tc2)):

> putLinConv([6,2],SPLTensorI(combineLin(sb3,tc2),tc2)):

> putLinConv([18,2],SPLCompose(SPLTensor(overlap(3,2,3),

SPLIdentity(3)),

SPLTensorI(sb3,tc2,

SPLCommuteTensorI(tc3,tc2)))):

All of the entries are straightforward except for the size [18,2]. In this case an algorithm
that is equivalent to a tensor product of a size 18 linear convolution and size 2 linear con-
volution is needed. However this cannot be obtained directly to minimize the number
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of operations. Instead, the best size 36 convolution, which is equivalent to [12,3] must
be converted to a size [18,2]. To do this, note that the A component of size [12,3] is
sb3[A]⊗ tc2[A]⊗ tc2[A]⊗ tc3[A]. By using SPLCommuteTensor, the A component sb3[A]⊗
tc2[A]⊗ (L15

5 (tc2[A]⊗ tc3[A])L6
2) is obtained, which has operation counts the same as [12,3]

but is equivalent to sb3[A] ⊗ tc2[A] ⊗ tc3[A] ⊗ tc2[A] and thus usable within [18,2]. Note
the same permutation is done on the B component of the bilinear algorithm. Next the left
composition of SPLTensor(overlap(3,2,3),SPLIdentity(3)) occurs because the overlap
matrix from the size 18 convolution is factored out.

This yields the minimum number of operations and as shown below, saves 750 operations
over the split-nesting algorithm. This example is discussed fully in [5].

> fixedVecCount(s);

B Adds: 672, B Muls: 0, B Assigs: 3209

At Adds: 1394, At Muls: 0, At Assigs: 4497

haddamards: 830, Total Ops: 2896.
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4 Conclusion

An infrastructure for interactively generating, testing, and manipulating convolution algo-
rithms is described. This infrastructure is not only useful for interactively working with
convolution algorithms, but also provides a mechanism for generating a domain specific lan-
guage called SPL, that can ultimately transform the algorithms into efficient C or FORTRAN
code. The infrastructure was built to be a general problem solving tool, with a convolution
package built upon this tool. As a result, other libraries for solving matrix based problems
can be built upon the core package with relative ease. This report provided an overview of
SPL, a brief survey of key convolution algorithms, a discussion of the use of the infrastruc-
ture, and a discussion of how the infrastructure can be extended by adding new symbols,
operators, and algorithms.
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