Portable, Low Cost, Radiation-Free Breast Cancer Detection for Dense Breasts

Xin Xua, Wei-Heng Shihb, Ari D. Brooksc, Wan Y. Shiha

Breast Cancer

- Most breast cancers begin in the ducts (ductal carcinoma), some begin in the lobules (lobular carcinoma), and the rest in other tissues.
- Globally, the incidence of breast cancer is increasing as Western diet and child bearing practices are adopted.

Worldwide, there are 1 million new cases and 0.5 million deaths each year.

• There is a rapid increase in breast cancer incidence with high mortality rate in developing countries such as India and China.

Breast cancer is the leading cancer in women.

• There is a significant correlation between breast tissue histology and stiffness.

Occurrence	Cancer Type	
30%	Breast	
14%	Lung & bronchus	
9%	Colon & rectum	
6%	Uterine corpus	
5%	Thyaroid	
4%	Non-Hodgkin lymphoma	
4%	Melanoma of skin	
3%	Kidney & renal pelvis	
3%	Ovary	
3%	Pancreas	
19%	All Other Sites	

3 11	stology alla stilliess.			
	Tissue Type	Elastic Modulus at 1% Strain (kPa)		
	Fat	4.8		
	Gland	17.5		
	Invasive Ductal Carcinoma	47.1		
	Ductal Carcinoma in Situ	71.2		

http://www.cancer.org/Cancer/BreastCancer/DetailedGuide/breast-cancer-key-statistics. http://www.breastcancer.org/symptoms/understand_bc/statistics.jsp Wellman et al., Harvard BioRobotics Laboratory Technical Report, 1999. Elisa E. Konofagou, Tim Harrigan, Jonathan Ophir, "Shear strain estimation and lesion mobility assessment in elastography," Ultrasonics 38, pg: 400-404, 2000. E. Chen, Ph.D. dissertation, University of Illinois at Urbana-Champaign, 1995

Limitations of Current Technologies

- Mammography:
- i. Accuracy decreases significantly in women with dense breasts.
- ii. Compression of the breast during examination may lead to distortion artifact.
- Magnetic Resonance Imaging (MRI):
 - i. Requiring use of injected contrast material.
- ii. Expensive.
- Ultrasound:
 - i. Cannot reliably measure calcifications, tiny calcium deposits associated with many breast cancers.
- ii. Highly operator and equipment dependent.

Radiology Info; http://www.radiologyinfo.org/content/mammogram.htm, imaginis; http://imaginis.com/breasthealth/mri.asp?mode=1 http://www.sdearthtimes.com/et0798/et0798s16.html, http://www.radiologyinfo.org/en/info.cfm?pg=breastus#part_ten *S. Srinivasan, T. Krouskop, and J. Ophir, Ultrasound in Medicine and Biology, Vol. 30, No. 7, pp.899-918, 2004

Piezoelectric Finger (PEF)

- Piezoelectric finger (PEF) is a piezoelectric cantilever with both an actuator and a sensor in one device that works all electrically to measure tissue stiffness much like a finger.
- With a square tip design such as shown below, a PEF can conduct both the compression and the shear measurements.

X Distance (cm)

H. O. Yegingil, W. Y. Shih and W.-H. Shih, J. Appl. Phys., 101, 054510 (2007)

ex vivo Experiments

- G / E ratio is obtained using the elastic (E) and shear (G) modulus scans.
- G / E ratio, according to our statistical data, is >0.7 for invasive tumors ~0.5 for hyperplasia, and ~0.3 for mobile breast tumors, e.g., precancers and benign tumors.

Statistics on 71 Excised Breast Tissues

All 71 patients	Sensitivity	Specificity
Malignancy	96% (45/47)	54% (13/24)
Invasive Carcinoma	89% (34/38)	82% (27/33)
Abnormality	100%(71/71)	

25 of 71 cases are dense breasts

25 patients	Sensitivity	Specificity
Malignancy	94% (16/17)	63% (5/8)
Invasiveness	93% (14/15)	80% (8/10)
Abnormality	100% (25/25)	

H. O. Yegingil, W. Y. Shih and W.-H. Shih, J. Appl. Phys., 101, 054510 (2007)

Obiectives

- To investigate PEF as a tool for in vivo breast cancer imaging to identify patients for further mammography screening.
- Investigate the size and the location of the tumor in vivo and compare with pathological results.

in vivo Measurement Device

PEF array provides faster measurements.

in vivo measurement system

PEF probe

Patients are in a supine position with minimal or no discomfort

in vivo Breast Cancer Detection

- We have tested the PEF probe on 41 women.
- Examples Subject A

PEF showed a 1.5×2.1 cm lesion at 5 o' clock and 4 cm from nipple and a 2.4×2.0 cm lesion at 7 o' clock and 4 cm from nipple, both of which were confirmed by pathology as DCIS. Mammogram showed a dense breast and missed the two lesions.

PEF both palpable and non-palpable tumors.

Comparison of PEF scan with palpation (use ±2 o' clock tolerance)

	Tumor Type	PEF	Mammography
Palpable	Malignant (10)	10/10	9/10
lesions (17)	Benign (7)	7/7	7/7
Non-palpable	Malignant (3)	3/3	2/3
lesions (13)	Benign (10)	9/10	10/10

PEF detected 4 cancers missed by mammography

Comparison of PEF scan with mammography by tumor (use ±2 o' clock tolerance)

Pathology	# tumors detected by mammography		^a Mammography missed 4 cancers in 3 patients,
Malignant (15)	11a/15	15/15	including 1 IC, 1 ILC, and
Benian (18)	18/18	17/18	2 DCIS.

- PEF can detect tumors in mammographically dense breasts.
- sizes determined by PEF agree with the sizes determined by pathology.

Conclusions

- PEF is able to detect palpable and non-palpable breast tumors in vivo.
- •PEF is able to detect tumors in both dense breasts and non-dense breasts.
- Most of the sizes determined by PEF agree with the sizes determined by pathology.

Other Applications

•Skin cancer detection, prostate cancer detection and etc.

Acknowledgment

 The work was supported in part by the Wallace Coulter Foundation and the QED Grant of the University City Science Center. Current Funding: \$890,000 by PA Department of Health 6/1/2012-5/31/2014 "Commercial Prototype Development & Clinical Validation of Low-Cost Hand-Held Breast Scanner".

^aSchool of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104

^bDepartment of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104 ^cDepartment of Surgery, Drexel University College of Medicine, Philadelphia, PA 19104

