Running Lecture Series

Drexel University
Physical Therapy & Rehabilitation Sciences

Run with the Dragon.

Rob Maschi PT, DPT, OCS, CSCS
Topics

- Running biomechanics and role in injury
 - Over striding (cadence)
 - Limb stability
- Strength training:
- Plyometrics
- Core strength training
 - To prevent or recover from injury
 - Improve run performance
- Running gait analysis
 - Motion analysis laboratory
 - Clinical gait analysis
High injury rate in runners...

Why do runners get injured?

Overuse is the common mechanism
Cause of Overuse Injury is Multifactorial

- **Dosage**
- **Structure**
- **Mechanics**

Training
- Mileage, Intensity

Anatomy

Strength
- Flexibility & ROM
- Neuromuscular control
- Running Technique

Injury Threshold
Cause of Overuse Injury is Multifactorial

- Training
 - Mileage, Intensity
- Anatomy
- Strength
 - Flexibility & ROM
 - Neuromuscular control
 - Running Technique

Injury Threshold
- Dosage
- Structure
- Mechanics
Cause of Overuse Injury is Multifactorial

- Training
 - Mileage, Intensity

- Anatomy

- Strength
 - Flexibility & ROM
 - Neuromuscular control
 - Running Technique

Injury Threshold

- Dosage
- Structure
- Mechanics
Running Mechanics

Is there a correct way to run?

• Incorrect ways to run
• Movement patterns that:
 o increase biomechanical stress to bone and soft tissue
 o Inefficient

Thanks Brian Hoke
Biomechanical Errors

- Over striding
 - Technique issue
- Limb stability
 - Neuromuscular control issue
 - Control in 3 planes of motion
 - Account for most injuries
 - Preventable or fixable
Over striding

- Foot contacts ground too far in front of your body
Over striding - why is it bad?

- Larger vertical displacement of COM
- Larger vertical velocity of impact

Greater impact loads
(Magnitude and rate of loading)

- “Putting on the brakes”

Inefficient
How do you reduce over striding?

- Running velocity = \text{step length} \times \text{step frequency} \ (\text{steps/min})

- Variation among runners
 - Elite: 180 steps/min
 - Recreational: 145-160 steps/min
Decrease joint loads

- Small changes in step length equate to large changes in loads across the knee joint
 Willson, Lenhart

- 5% increase in step rate = substantial decrease in energy absorbed at knee
 Heiderscheit
Increase step rate

Science behind the fad

- Barefoot running
- Minimalist shoe
- Pose running
 - Common denominator = increased step frequency
 - Position of foot at initial contact closer to COM
Barefoot running

- Change foot strike pattern?
Strike pattern, load and injury

RFS
- Foot and Ankle: lower demand / load
- Knee: higher demand / load

FFS
- Knee and hip: lower demand / load
- Foot and Ankle: higher demand / load
 - Daoud 2012
• **Injuries in barefoot and minimalist runners**
 - Plantar fascia, Achilles tendon, calcaneus, metatarsal stress fractures
 - Transition?

• **Barefoot heel strikers**
 - Significant increase in impact loads
Learning a new strike pattern

- Old dog, new trick...
- Inconsistent strike patterns during transition
 - “mixed landing pattern”
 - Increased tibial shock
 - May increase injury risk

Cheung 2014, Olin 2013

- What is injury rate in properly transitioned barefoot runners vs traditional (shod) runners?
Vibram class action law suit

Settlement:

1. **$3.75 million to provide partial refund**

2. Vibram has agreed to discontinue to make any claims that Five Fingers footwear is effective in strengthening muscles or reducing injury in its marketing and advertising campaigns, unless the company discovers new scientific evidence that proves it.
Is it necessary to go barefoot (or minimalist)?

Leave your shoes on and change stride length?
Over striding

How to fix it:

- **Count cadence**
 - Count foot strikes per minute
 - Work towards 90 each side
 - Shorter, quicker strides

- **Drills**
 - Arm swing/quick feet
 - Increase leg turnover

- **Run barefoot?**
 - Use as a cue to shorter stride,
 - midfoot / forefoot strike

- **Hills**
 - Running up hill shortens stride
Over striding

- How to fix it:
 - Set target cadence
 - Use metronome
 - Cadence App
 - Song playlist organized by cadence
Cadence Training Protocol

- (Single session)
- 5-10% increase in step rate
 - 2 min with metronome
 - 1 min without metronome
 - 1 min with metronome
 - 1 min without metronome
- Stop, restart
 runner independently produces new pattern
 - Repeat above training if necessary
Limb stability
Running is a single leg activity
Must be stable on one leg
Not stable
Why is alignment important?

- Studies demonstrate poor control of limb position is related to injury.
Alignment
Tests for stability

- Single leg squat
- Step down

[Images showing various exercises with labels for Medial collapse and Pelvic drop]
Tests for Stability
How do you improve limb stability?

Strengthen Gluteal muscles!

- **Gluteus maximus**
- **Gluteus medius**
- **Gluteus minimus**
- **Iliotibial band**
Gluteal Muscle Strength: Runners with PFPS & ITBS

- Decreased hip **abduction** strength
 - Powers
 - Ireland
 - Robinson
 - Cichanowski
 - Dierks
 - Souza
 - Fredericson

- Decreased hip **extension** strength
 - Powers
 - Souza
 - Robinson
Noassatall Syndrome

Typical runners build

NO GLUTES!
Hip Strengthening: Basic Concepts

- Progress from two leg activity to one leg activity as stability improves
- Emphasize good form and alignment
- High reps, low weight (body weight)
Establishing core strength

- Squats
- Bridges
- Step ups
- Plank
Why Planks and trunk stability?

- Activating core improves control of limb movement
- Stable trunk (abdominal muscles) improves hip muscle function
 - Ability to recruit gluteal muscles
 - Ability to generate force

Shirey, Oh, Cynn, Boren

Stable platform
Planks
Side Planks
Bridges
Squats
Lunges
Dynamic Lunge
Focus on alignment
Lateral hip strengthening
Single leg training
Run-specific movements
Train for stability

- Unstable surfaces
 - Bosu
 - Foam rollers (1/2 rollers)
 - Wobble boards
Plyometrics

- Technique to develop power
- To train the muscles to become more explosive

- Stretch muscle followed by contraction of muscle
 - Jumping
 - Running
-causes increased force production of same muscle
Plyometrics

Benefits:

• Improved neuromuscular control

 Decreased peak landing forces 22%
 Hewett
 Decreased magnitude and rate of loading
 Irmischer
 Improved limb stability (decreased hip adduction)
 Myer
Plyometrics

Benefits:

- **Improved Running Economy**
 - (How much O2 is required to perform at a given intensity)
 - Jung, Turner

- **Performance times**
 - Sprinters and long distance runners
 - Paavolainen, Rimmer, Spurrs
Plyometrics

- Good form is essential

Good

Bad
Plyometric Progression

- Stair hops
- Cone hops
- Cone hops/turns
- Box jumps
 - Front
 - Lateral
- Alternate legs
- Split squat
Plyometric Progression

- Stair hops
- Cone hops
- Cone hops/turns
- Box jumps
 - Front
 - Lateral
- Alternate legs
- Split squat
Plyometric Progression

- Stair hops
- Cone hops
- Cone hops/turns
- Box jumps
 - Front
 - Lateral
- Alternate legs
- Split squat
Plyometric Progression

- Stair hops
- Cone hops
- Cone hops/turns
- Box jumps
 - Front
 - Lateral
- Alternate legs
- Split squat
Plyometric Progression

- Stair hops
- Cone hops
- Cone hops/turns
- Box jumps
 - Front
 - Lateral
- Alternate legs
- Split squat
Video gait analysis
• Motion analysis laboratory
 – collecting data to answer research questions about groups / subgroups of runners.

• Clinical running analysis
 – runner wants to know about their own unique biomechanics (running form)
 – Am I running properly?
Clinical Running analysis

– Review training and injury history

Musculoskeletal exam

• Strength, flexibility, core control, structure

– Movement screening

• Information about muscle strength and activation patterns
Clinical Running Analysis

• Video analysis
• Dartfish 2-D motion capture software
 – One camera / No markers
Gait analysis

How I think I look running.
How I really look running.
Biomechanical analysis

- Assess movement patterns related to injury risk
Running analysis

• **Report:**

 Recommendations:
 – shoes/orthotics
 – gait retraining/form changes
 – exercise/treatment suggestions
 – training modifications.
Thank You

Go Dragons!
Questions?