For a better experience, click the Compatibility Mode icon above to turn off Compatibility Mode, which is only for viewing older websites.

Matthew McCarthy

Dr. Matthew McCarthy

Associate Professor; Associate Department Head for Graduate Affairs

Randell 115
Personal Site:

The Multiscale Thermofluidics Laboratory


PhD, Columbia University

Research Interests

Multiscale thermofluidics; biotemplated nanofabrication and scalable nanomanufacturing; micro/nano-scale structures for enhancing phase change heat transfer; nanoscale transport and separations.


McCarthy received his BS degree (2002) in Aerospace Engineering from Syracuse University, Syracuse, NY and both his MS (2004) and PhD (2006) degrees in Mechanical Engineering from Columbia University in New York City. His graduate research was focused on MEMS-based sensors and actuators for microfluidic, aerospace, and cooling applications. For his MS degree he worked on the development of a harsh environment silicon carbide shear stress sensor for use within hypersonic vehicle engines. His Doctoral thesis was on the design, fabrication and characterization of a novel microvalve for self-adaptive micro-cooling applications. McCarthy was a Postdoctoral Research Associate in the MEMS Sensors and Actuators Lab (MSAL) at the University of Maryland in the Department of Electrical and Computer Engineering from 2007 to 2009. At MSAL, his research efforts were focused on the development of emerging Power-MEMS technologies with particular emphasis on high-speed ball-bearing supported rotary micromachines, tribological characterization of rolling contact at the microscale, and nanostructured MEMS energy storage devices. From 2009 to 2010, McCarthy was a Postdoctoral Associate in the Device Research Laboratory at the Massachusetts Institute of Technology working on compact air-cooled heat exchangers and novel nanofabrication techniques for thermal and fluidic applications.

His faculty appointment in the Department of Mechanical Engineering and Mechanics at Drexel University began September 2010. His research interests include multiscale thermofluidics, biotemplated nanofabrication, scalable nanomanufacturing, micro and nano-scale structures for enhancing phase change heat transfer, and transport and separation through nanoporous membranes.